

Gluconeogenesis

Editing File

Color Index:

- Main Text (black)
- Female Slides (Pink)
- Male Slides (Blue)
- Important (Red)
- Dr's Notes (Green)

- Extra Info (Grey)

Objectives

- The importance of gluconeogenesis as an important pathway for glucose production
- The main reactions of gluconeogenesis
- The rate limiting enzymes of gluconeogenesis
- Gluconeogenesis is an energy consuming, anabolic pathway

Gluconeogenesis in General Metabolism (

- Gluconeogenesis (aka glucose metabolism): is the synthesis of glucose from non-carbohydrates source.
- □ It is one of the essential pathway for the energy metabolism.
- It works by Reciprocal control It doesn't happen at the same time with glycolysis.
- It has 3 irreversible steps.
- I It happens mainly in the liver and later on in the kidney.
- It happens both in mitochondria and in the cytosol.

Substrates for gluconeogenesis

Glycerol

the only one that happens in cytosol only

Amino acids

Only some Amino acids can enter this cycle

Lactate (Cori cycle)

convert into oxaloacetate in the mitochondria and then phosphoenolpyruvate

Amino acids

Both of the two carbon in Acetyl CoA are going to be removed

The blue arrows are the only one that are glucogenic

Lactate (Cori Cycle)

When there's no oxygen (only in cytosol)

This can come in SAQ

Pyruvate Carboxylase and PEP-CK

Pyruvate carboxylase + PEP-CK = pyruvate kinase

Regulation of Pyruvate Carboxylase

Acetyl CoA diverts pyruvate away from oxidation and toward gluconeogenesis

Fructose 1,6-Bisphosphatase

Activated by ATP

Dephosphorylation of fructose 1,6-Bisphosphate (opposite direction)

Fructose 1,6-Bisphosphate = PFK-1

Glucokinase is only in the liver Hexokinase is in all body tissue

HO-C-H

H-C-OH

H-C-OH

H-C-OH

н

D-Glucose

H₂O

Glucose 6-phosphatase

Out of the cell

Glucose 6phosphate

н

HO-C-H

H-C-OH

H-C-OH

H-C-O- P

Dephosphorylation of glucose 6-phosphate allows release of free glucose from the liver and kidney into blood

Glucose 6phosphatase

Glucose 6-phosphatase = glucokinase

Gluconeogenesis: Energy-Consumed

4 ATP and 2GTP are utilized

6 high-energy phosphate bonds from pyruvate to glucose

Allosteric Regulation

Inhibit

- AMP - F 2,6-Bisphosphate - I/G ratio

Activate

 Acetyl CoA (Pyruvate carboxylase)
F 1,6-Bisphosphatase
PEP-CK

Take Home Messages

- Gluconeogenesis is an important pathway for glucose production from non carbohydrate sources during prolonged fasting
- Lactate, glycerol and glucogenic amino acids are the major gluconeogenic substrates
- Gluconeogenesis is not a simple reversal of glycolysis In fact, gluconeogenesis requires 4 unique reactions to circumvent the 3 irreversible reactions of glycolysis
- Gluconeogenesis and glycolysis are reciprocally controlled, allowing efficient glucose metabolism
- o It is mainly anabolic pathway that consumes ATP for the synthesis of glucose

	1. Which of these is allosteric inhibitor of gluconeogenesis?			
	A)ATP	В)АМР	C)F 2,6-Bisphosphate	D)Acetyl CoA
2-A 3-C 4-D	2. How many high energy bond are there from pyruvate to glucose?			
	A) six	B)four	C)three	D)five
	3. Which of these gluconeogenesis substrate happens only in cytosol?			
	A)Lactate	B)Amino acids	C)Glycerol	D)Cori cycle
	4. What is the main site of gluconeogenesis?			
	A)Bone marrow	B)brain	C)heart	D)Liver
	5. How many irreversible steps are there in gluconeogenesis?			
	A)three	B)four	C)Only one	D)six
:SY9W 8-1	venA			

Biochemistry Team

