

Introduction to metabolism

Editing File

Color Index:

- Main Text (black)
- Female Slides (Pink)
- Male Slides (Blue)
- Important (Red)
- Dr's Notes (Green)

Extra Info (Grey)

Objectives

- Understand the concept of metabolic pathway
- Identify types & characters of metabolic pathways(anabolic and catabolic)
- Identify ATP as the energy currency of cells

Metabolism consists of:

catabolic "Breaking down"

anabolic "Building up"

molecules ANABOLISM Synthesis

Energy producing pathways (Exergonic)

Exp: Complex carbohydrates to simple sugar

Energy consuming pathways (Endergonic)

Exp: Amino acids to protein

Pathway vs Chemical Reaction

Metabolic pathway:

A multi-step sequence of chemical reactions

A product of first reaction becomes a substrate for second reaction

Integrated pathways: Metabolism

Note: Pathways that regenerate a component are called cycles. eg: TCA cycle (citric acid cycle) (krebs cycle)

The product of one reaction is the substrate of the subsequent reaction. Glucose 6-P Glucose Fructose 6-P Fructose 1.6-bis-P Glyceraldehyde 3-P 5 Dihydroxy-1.3-bis-Phosphoglycerate 3-Phosphoglycerate Same enzymes 2-Phosphoglycerate Phosphoenolpyruvate different enzymes Lactate 5 Pyruvate Figure 8 1 Glycolysis, an example of a

metabolic pathway.

e.q. $A \rightarrow B$

 $B \rightarrow C$

Metabolic Map

Different pathways can intersect to form an integrated and purposeful network of chemical reactions that intersect called "The Metabolic Map". metabolic map help us to Understand the reactions and have a knowledge about how one pathway affects others pathways

Benefits of metabolic map, To know:

- -How the substance is formed .
- -Which enzyme is used .
- -If the reaction is reversible or irreversible.

-If there is defect in any enzyme.

About the metabolic map:

فكرتها زي قوقل ماب لو واحد وصف لك تروح مكان بيقول لك تمشي لين جامعة الملك سعود من طريق الامام وبعدين تاخذ يمين وكذا ما راح تقدر تجيبه الا من طريق واحد لكن لما يعطيك خريطة او اللوكيشن بالجوال راح يعطيك قوقل ماب اكثر من طريق عشان تصل

الصورة للتوضيح

Thank to 439

Classification:Most pathways can be classified as:

Catabolic

Has three stages to produce energy

- Hydrolysis of complex molecules to their component building blocks
- 2) Conversion of building blocks to acetyl COA (or other simple intermediates)
- 3) Oxidation of acetyl CoA; oxidative phosphorylation

Anabolic (Stage II to I)

- Formation of precursor molecules into complex molecules
- Endergonic reactions (require ATP) or sometimes GTP
- A divergent process (few precursors form more complex products)

Comparison of catabolic and anabolic pathways

Anabolic	Catabolic	Energy-yielding nutrients	Complex molecules
			Proteins Polysaccharides Lipids
Simple to complex molecules	Complex to simple molecules	Proteins	Nucleic acids
F ue de verse se in	E ucanonais	A Chemical energy A	
Endergonic Requires energy	EXERGONIC Produce energy		ADH
Involves reduction Gain H+	Involves oxidation Loss H+	Energy-poor end products	Precursor molecules
		CO ₂	Some amino acids Sugars
Requires NADPH Reducing agent	Requires NAD+ Oxidising agent	H ₂ O NH ₃	Fatty acids Nitrogenous bases
Divergent process	Convergent process	Figure 8.4	
Entergent process	controlgent process	anabolic pathwa	ays.

Amphibolic Pathways

- Amphi = dual (ثنائي)
- Amphibolic= dual pathway

(both catabolic and anabolic)

Example: Krebs cycle (TCA Cycle)

Krebs cycle is mainly a catabolic cycle but with some anabolic features.

part of Krebs cycle is used for the synthesis of glucose from amino acids. Therefore it's amphibolic

Helpful video

Energy Currency: ATP ATP + $H_2O = ADP + P_i + Energy$

•The free energy liberated by the hydrolysis of ATP is used to drive the endergonic reactions

•ATP is formed from ADP and P_i when fuel molecules are oxidized

•This ATP-ADP cycle is the fundamental mode of energy exchange in biological systems

ATP has two bonds can produce energy. (less stable - easy to break)

Sometimes we break ADP to AMP if more energy is needed.

Oxidation-Reduction in Metabolism

Oxidation	Reduction		
Loss of hydrogen	Gain of hydrogen		
Loss of electron	Gain of electron		
Mnemonic: "Oil Rig" Oxidation is loss - Reduction is			

FAD, NAD⁺: oxidizing agents (Accept electron)FADH2, NADH: reducing agents (loss

electron)didn't understand?-when the oxidizing agents enter a reaction (eg;NAD⁺). they will oxidize the other molecule (oxidizing agents) but they will reduce themselves NAD⁺ will become NADH after the reaction-the same for reducing agent (NADH). they will reduce the other molecule (reducing agent) but they will oxidize themselves NADH will become NAD⁺

Oxidative phosphorylation is the process to convert ADP to ATP. It happens in mitochondria.

Metabolic Fuel

Carbohydrates and lipids (mainly) and proteins (little extent) are used for energy production.

Glucose and fatty acids are major sources of energy.

Amino acids are a minor source of energy.

Glucose is the major metabolic fuel of most tissues.

- some tissues can't use fatty acid as metabolic fuel easily. As a result they prefer glucose.

Electron Transport Chain (ETC) **Figure For Illustration only** Intermembrane Matrix MITOCHONDRION space Substrate NAD+ FMNH_a (reduced) 1202 Product **FMN** Fe²⁺ NADH Fe²⁺ Fe³⁺ CoQ + H+ (oxidized) Complex I Cyto b Cyto c Cyto a + a₃ Fe³⁺ CoQH₂ Fe³⁺ Fe²⁺ Fumarate FADH2 H2O Complex III Complex IV FAD Succinate Sites for ATP Synthesis Complex II

Electron transport and ATP synthesis are tightly coupled processes

MCQs

Q1: Characteristics of	metabolic map)
------------------------	---------------	---

A)Purposeful	B)Integrated	C)Both A and B	D)None of them					
Q2: which type of pathways does Krebs cycle use?								
A)Anabolic pathway	B) Amphibolic pathway	C)Catabolic pathway	D)None of them					
Q3: when an oxidizing agent enters a reaction, the outcome will be								
A)oxidizing the other molecule and himself	B)reducing the other molecule and himself	C)reducing the other molecule and oxidizing himself	D) oxidizing the other molecule and reducing himself					
Q4: All the chemical reactions taking place inside a cell are collectively known as:								
A)Pathways	B)Metabolic map	C)Metabolism	D)A and C					
Q5: which of these regulation is an example of intracellular regulation?								
A)Substrate availability	B)Second messenger	C)Product inhibition	D)A and C					
Answer key:	3)D 4)C 2)D	1)C 5)B						

Questions:

Q6: what is the pathway that consumes ATP?

Q7: what does amphibolic pathway means? and give an example for it.

Q8:how can ATP produces energy?

Q9: Compare between Catabolic and Anabolic pathways.

Answers:

Q6 Anabolic pathway

Q7 it's a pathway that have both catabolic and anabolic features. Krebs cycle.

Q8 hydrolysis of ATP(ATP + $H_2O \rightarrow ADP + P_i + Energy$

Q9 slide 8

Biochemistry Team

