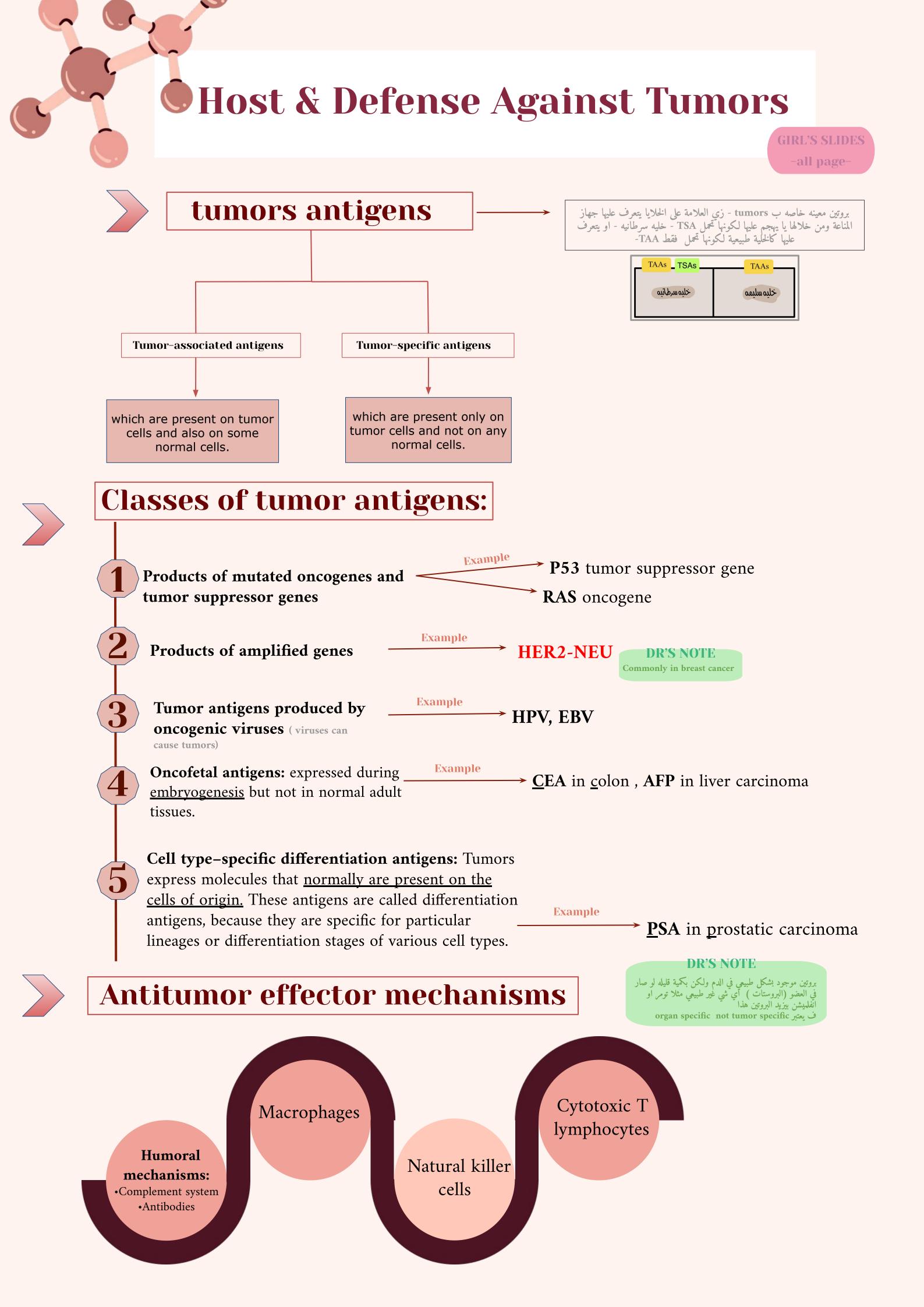
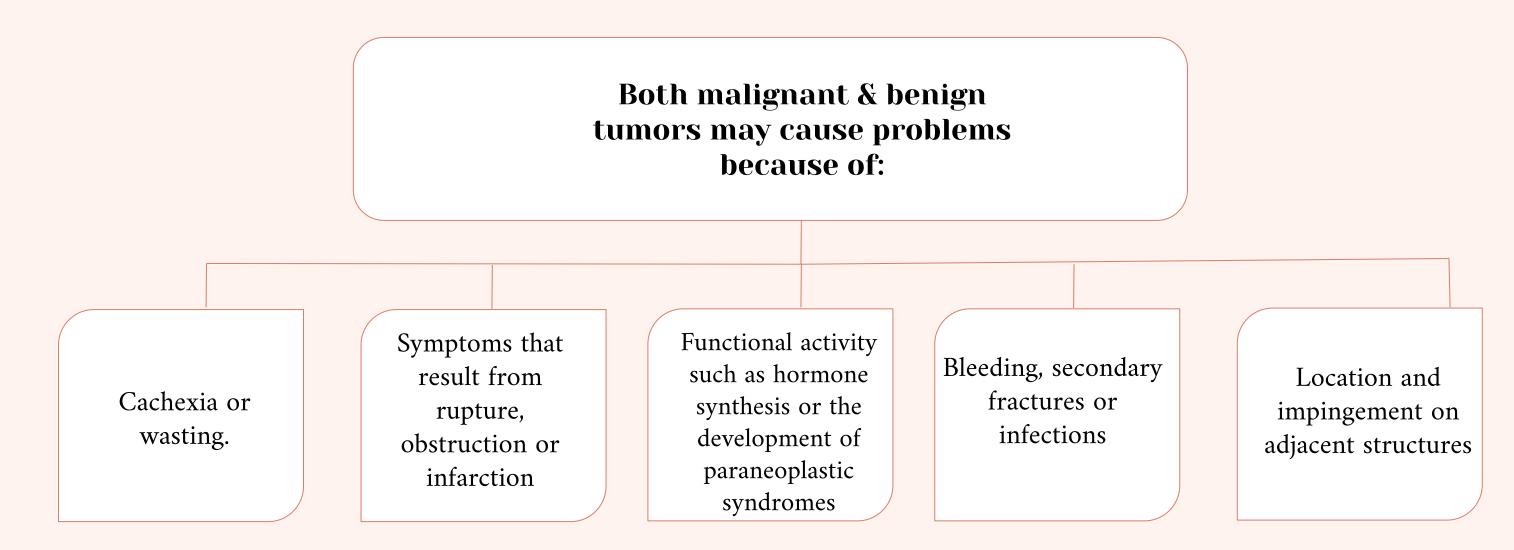


Grading , staging & clinical features of Tumors

OBJECTIVES


) define the host defenses against cancer

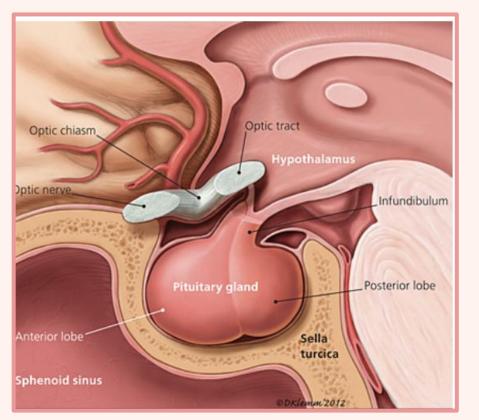
define tumor grade & clinical stage

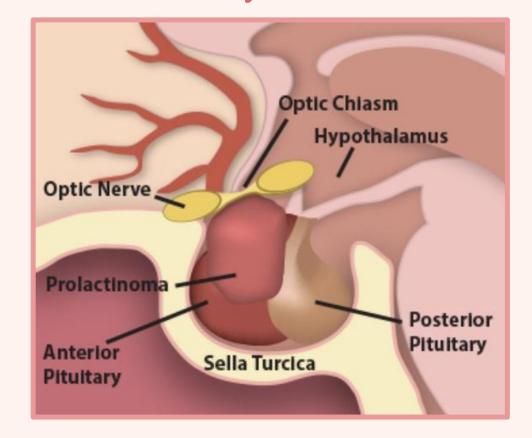

- **O** define cachexia & its causes
- Define a paraneoplastic syndrome & know examples of tumors associated with endocrinopathies, osseous, vascular and hematologic changes
- To be familiar with the general principles, value, procedures, and applications of biopsies, exfoliative & aspiration cytology and frozen sections.
- > To list examples of tests used to diagnose cancer: immunohistochemistry & flow cytometry.
- To discuss the use of molecular diagnostic testing in the setting of cancer diagnosis & prognosis.

Editing file

COLOR INDEX: MAIN TEXT (BLACK) FEMALE SLIDES (PINK) MALE SLIDES (BLUE) IMPORTANT (RED) DR'S NOTE (GREEN)

Clinical Aspects of Neoplasia




Location and impingement on adjacent structures

- Location is crucial in both benign and malignant tumors.
- A small (1-cm) pituitary adenoma can compress and destroy the surrounding normal gland, giving rise to hypopituitarism.
- A 0.5-cm leiomyoma in the wall of the renal artery may encroach on the blood supply, leading to renal ischemia and hypertension.

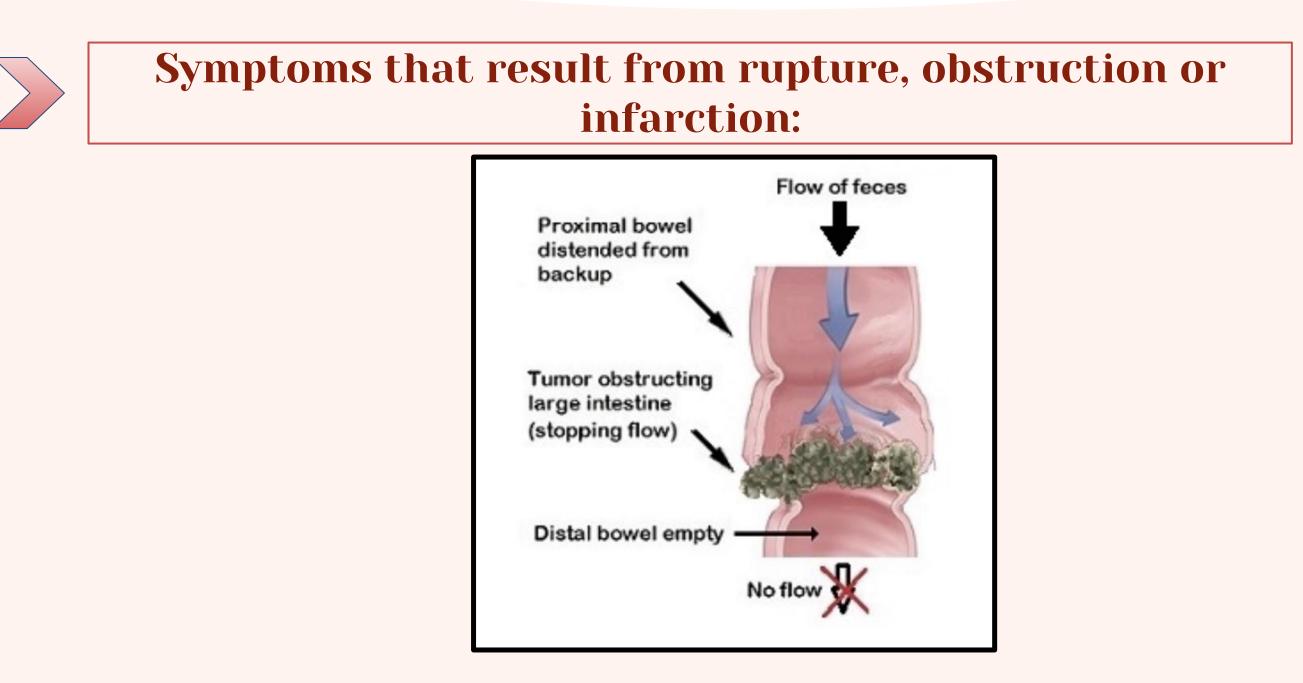
```
Pituitary Gland
```

Pituitary Adenoma

Bleeding, secondary fractures and infection

GIRL'S SLIDES

- A tumor may ulcerate through a surface or adjacent structures causing consequent bleeding or secondary infection or fracture.

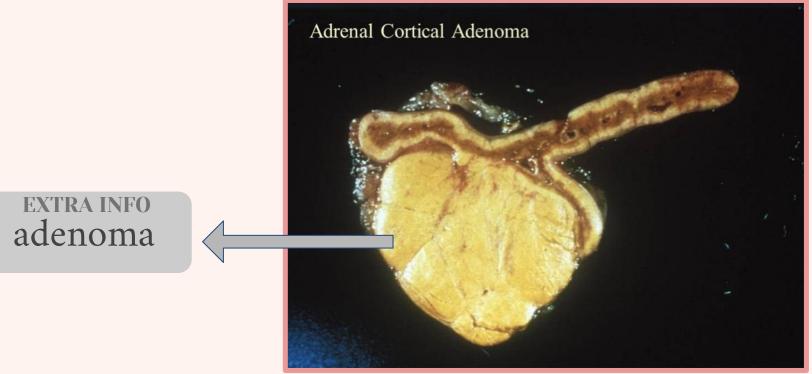


DR'S NOTE

Secondary infection or fracture means: العظم ضعيف وانكسر بسبب حاجه مفروض ما تسبب كسر للعظم الطبيعي ، ممكن يكون سيب ضعفه هو tumor او infection او osteoporosis Primary fracture:

العظم طبيعي وصحي وصار له trauma وانكسر

Clinical Aspects of Neoplasia



- Hormone production is seen with benign and malignant neoplasms arising in endocrine glands.
 - Adenomas and carcinomas arising in the beta cells of the pancreatic islets of Langerhans can produce hyper-insulinism, sometimes fatal.

• Some adenomas and carcinomas of the adrenal cortex elaborate corticosteroids that affect the patient (e.g., aldosterone, which induces sodium retention, hypertension, and hypokalemia)

 Such hormonal activity is more likely with a well-differentiated benign tumor than with a corresponding carcinoma.

Clinical Aspects of Neoplasia

Paraneoplastic syndromes:

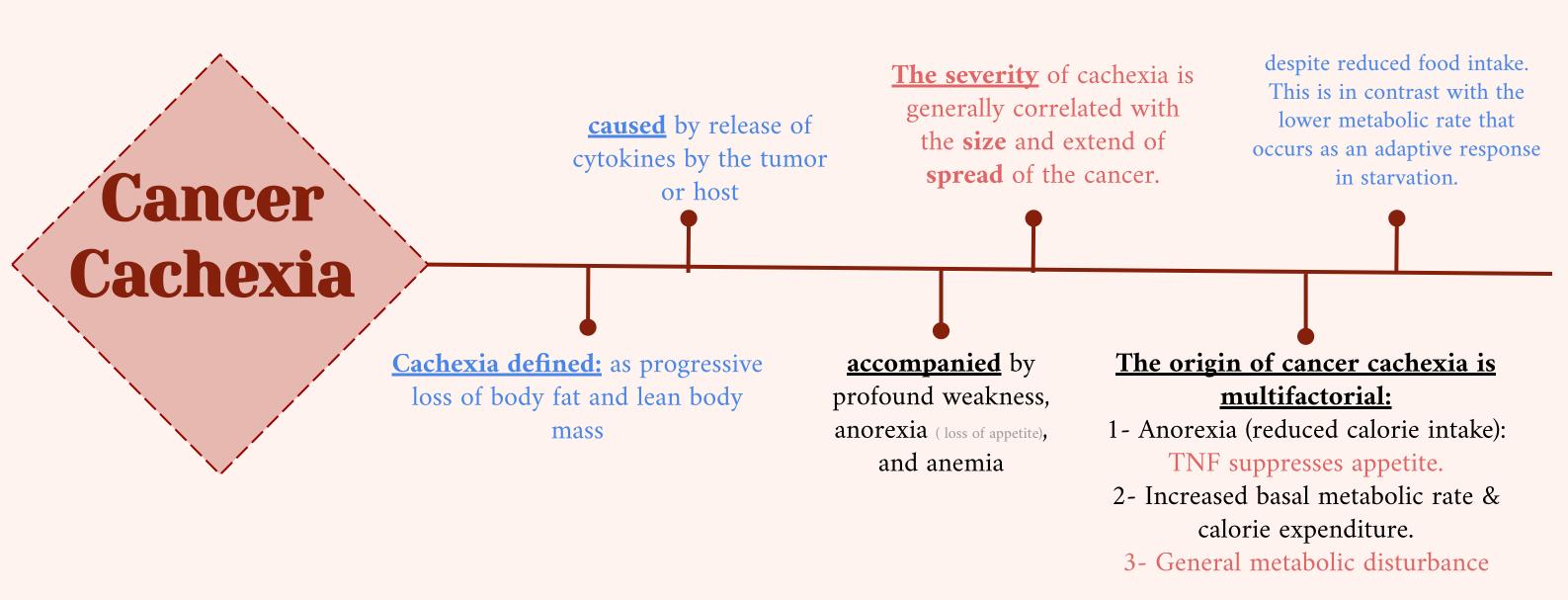
- They are symptoms that occur in cancer patients & cannot be explained
- Paraneoplastic syndromes, defined as systemic symptoms that cannot be explained by tumor spread or by hormones appropriate to the tissue, are caused by the ectopic production and secretion of bioactive substances such as ACTH, PTHrP, or TGF-α.
 - They are diverse and are associated with many different tumors.
 - They appear in 10% to 15% of patients.
 - Clinical recognition is important for several reasons:
 - They may represent significant clinical problems & may be lethal.
 - They may mimic metastatic disease.
 - They may represent the earliest manifestation of an occult neoplasm.
 - The most common paraneoplastic syndrome are:

Hypercalcemia very common

Cushing syndrome

2

3


Nonbacterial thrombotic endocarditis

• The most often neoplasms associated with these syndromes: Lung and breast cancers and hematologic malignancies

Clinical Syndrome	Major Forms of Neoplasia	Causal Mechanism(s)/Agent(s)
Endocrinopathies		
Cushing syndrome	Small cell carcinoma of lung Pancreatic carcinoma Neural tumors	ACTH or ACTH-like substance
Syndrome of inappropriate antidiuretic hormone secretion	Small cell carcinoma of lung; intracranial neoplasms	Antidiuretic hormone or atrial natriuretic hormones
Hypercalcemia	Squamous cell carcinoma or lung Breast carcinoma Renal carcinoma Adult T cell leukemia/lymphoma Ovarian carcinoma	Parathyroid hormone-related protein, TGF-0, TNF, IL-1
Hypoglycemia	Fibrosarcoma Other mesenchymal sarcomas Hepatocellular corrigona	Insulin or insulin-like substance
Carcinoid syndrome	Bronchial adenoma (carcinoid) Pancreatic carcinoma Gastric carcinoma	Serotonin, bradykinin
Polycythemia	Renal carcinoma Cerebellar hemangioma Hepatocellular carcinoma	Erythropoietin
Nerve and Muscle Syndrome		
Myasthenia	Bronchogenic carcinoma, thymoma	Immunologic
Disorders of the central and peripheral nervous systems	Breast carcinoma, teratoma	
Dermatologic Disorders		
Acanthosis nigricans	Gastric carcinoma Lung carcinoma Uterine carcinoma	Immunologic; secretion of epidermal growth factor
Dermatomyositis	Bronchogenic and breast carcinoma	Immunologic
Osseous, Articular, and Soft Tissue Ch	anges	
Hypertrophic osteoarthropathy and clubbing of the fingers	Bronchogenic carcinoma	Unknown
Vascular and Hematologic Changes		
Venous thrombosis (Trousseau phenomenon)	Pancreatic carcinoma Bronchogenic carcinoma Other cancer	Tumor products (mucins that activate clotting)
Nonbacterial thrombotic endocarditis	Advanced cancers	Hypercoagulability
Anemia	Thymoma	Immunologic
Others		
Nephrotic syndrome	Various cancers	Tumor antigens, immune complexes

DR'S NOTE الجداول ؟ حفظظظظ الي عليه خط هذي common مع clinical syndrome

Cancer cachexia and wasting

wasting

•A protein-mobilizing factor called proteolysis-inducing factor, which causes breakdown of skeletal muscle proteins by the ubiquitin-proteosome pathway, has been detected in the serum of cancer patients.

•It is suspected that TNF produced by macrophages in response to tumor cells or by the tumor cells themselves mediates cachexia.

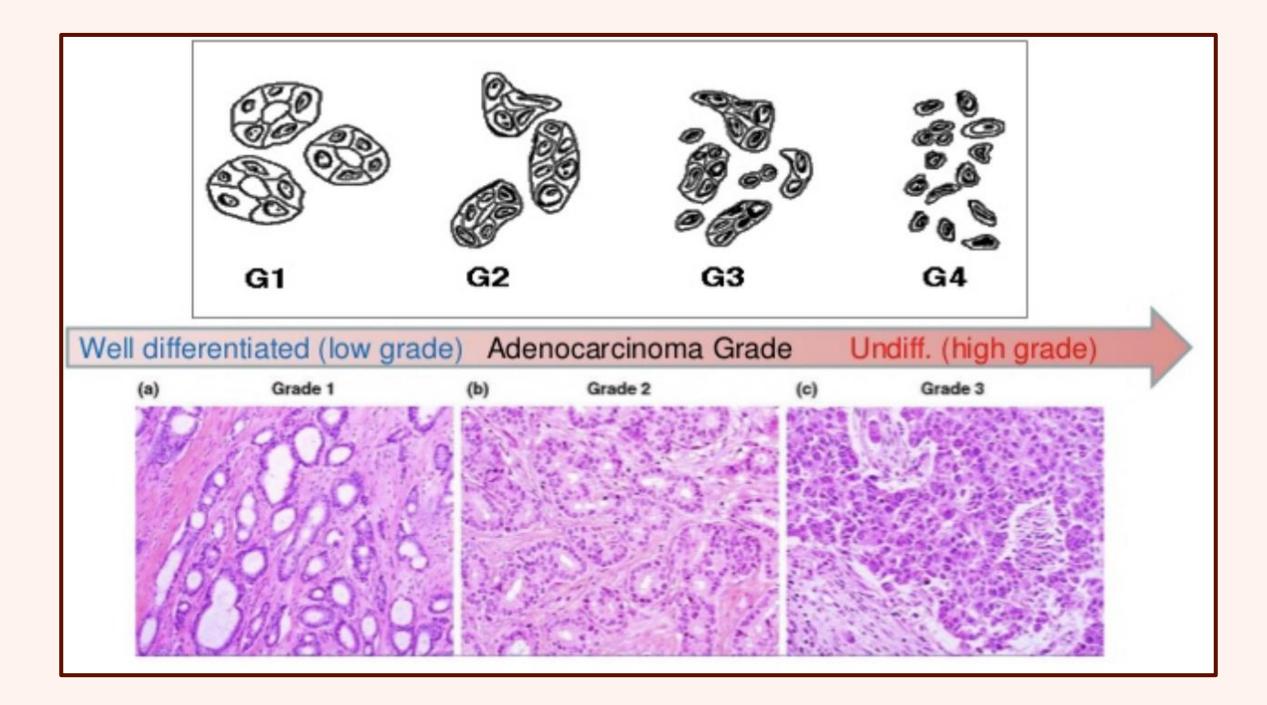
Grading and staging

Grading and Staging of Cancer

Methods to quantify the probable clinical aggressiveness of a given neoplasm and its apparent extent and spread in the individual patient are necessary for making an accurate prognosis and for comparing end results of various treatment protocols. (grading and staging is only for malignant tumors because benign tumors are very well differentiated)

Grading

It is based on the cytologic differentiation of tumor cells and the number of mitoses within the tumor.


Grade I Well differentiated

2 Grade II: Moderately differentiated

Grade III : Poorly differentiated

3

Grade IV: Anaplastic (undifferentiated)

staging

Staging

- Staging of cancers is based on the size of the primary lesion, its extent of spread to regional lymph nodes, and the presence or absence of metastases.
- This assessment usually is based on clinical and radiographic examination
- When compared with grading, staging has proved to be of greater clinical value.

Cont. staging

Two methods of staging are currently in use: the TNM system and the AJC (American Joint Committee) system

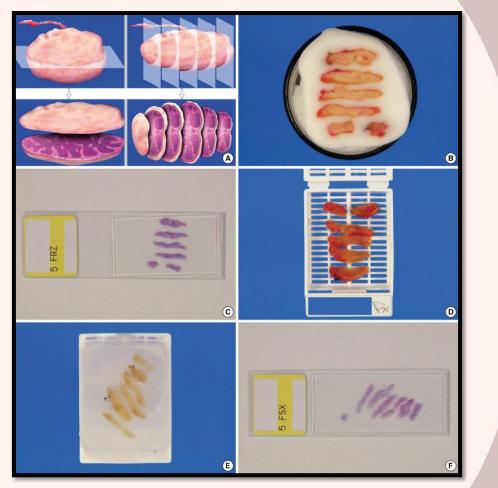
TNM staging system

AJC SYSTEM

•T0, Tis, T1, T2, T3, and T4 describe the increasing <u>size</u> of the primary lesion
•N0, N1, N2, and N3 indicate progressively advancing <u>node</u> involvement
•M0 and M1 reflect the absence and presence, respectively, of distant <u>metastases</u>.

AJC method, the cancers are divided into stages 0 to IV, incorporating the size of primary lesions and the presence of nodal spread and of distant metastases

Stage	Definition
Tis	In situ, non-invasive (confined to epithelium)
T1	Small, minimally invasive within primary organ site
T2	Larger, more invasive within the primary organ site
Т3	Larger and/or invasive beyond margins of primary organ site
Т4	Very large and/or very invasive, spread to adjacent organs
NO	No lymph node involvement
N1	Regional lymph node involvement
N2	Extensive regional lymph node involvement
N3	More distant lymph node involvement
MO	No distant metastases
M1	Distant metastases present


laboratory Diagnosis of cancer

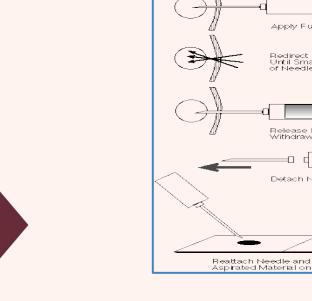
- Laboratory diagnosis of cancer can be achieved by:
 - Morphologic methods (بالشكل)
 - Biochemical assays (تحالیل دم او غیرها)
 - Molecular tests (genetics)
 - Morphologic methods include microscopic tissue or cellular diagnosis:
 - It is the gold standard for cancer diagnosis.
 - Several sampling approaches are available:
 - Biopsy, excision & frozen section
 - Fine-needle aspiration
 - Cytologic smears
 - Immunohistochemical stains
 - Flow cytometry

• Sampling approaches:

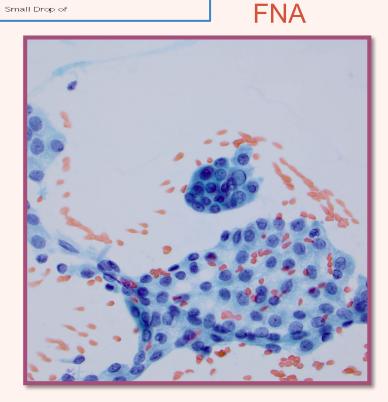
- Biopsies
- Surgical excisions
- Frozen section: a method in which a sample is quick-frozen and sectioned, permits histologic evaluation within minutes.

Frozen Section & Histological Sections

laboratory Diagnosis of cancer


• Several sampling approaches are available, including excision or biopsy, fine-needle aspiration, and cytologic smears, immunohistochemical stains, flow cytometry.

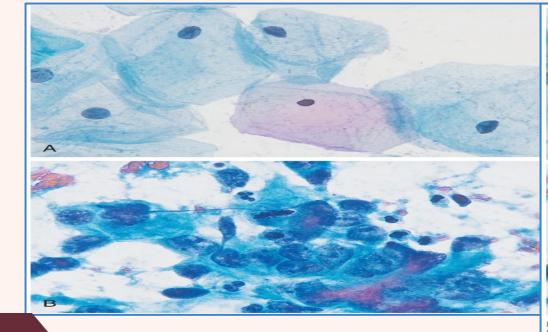
• Requesting *frozen section* diagnosis is sometimes desirable, as in determining the nature of a mass lesion or in evaluating the regional lymph nodes in a patient with cancer for metastasis. This method, in which a sample is quick-frozen and sectioned, permits histologic evaluation within minutes.


Fine needle aspiration

Fine needle aspiration involves aspiration(Link) of cells from a mass, followed by cytologic examination of the smear.

This procedure is used most commonly with readily palpable lesions affecting the breast, thyroid, lymph nodes, and salivary glands.
-Modern imaging techniques permit extension of the method to deeper structures, such as the liver, pancreas, and pelvic lymph nodes.

Aspiration of Palpable Masses



FEMALE SLIDES

MALE SLIDES

Cytologic (Papanicolaou) smears

Cytologic (Papanicolaou) smears provide another method for the detection of cancer. Historically, this approach has been used widely for discovery of **carcinoma of the cervix** but now it is used to investigate many other forms of suspected malignancy, such as endometrial carcinoma, bronchogenic carcinoma, bladder and prostate tumors, and gastric carcinomas. Neoplastic cells are less cohesive than others and are therefore shed into fluids or secretions.

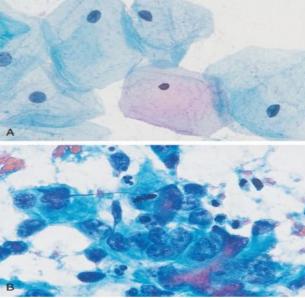
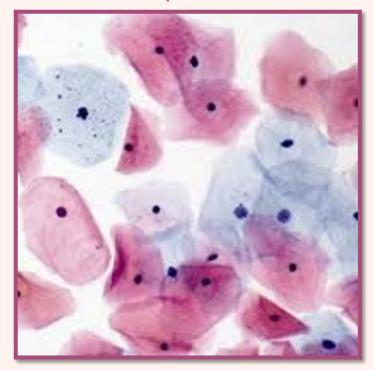
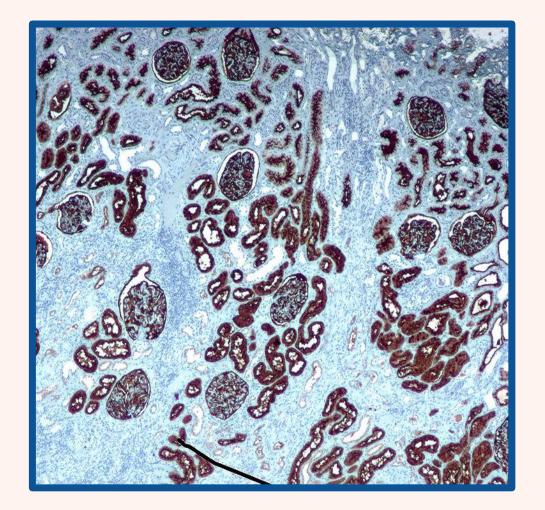
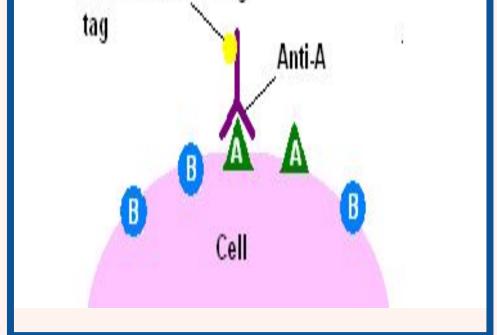



Figure 5–33 A, Normal Papanicolaou smear from the uterine cervix. Large, flat cells with small nuclei are typical. B, Abnormal smear containing a sheet of malignant cells with large hyperchromatic nuclei. Nuclear pleomorphism is evident, and one cell is in mitosis. A few interspersed neutrophils, much smaller in size and with compact, lobate nuclei, are

FEMALE SLIDES Pap Smear

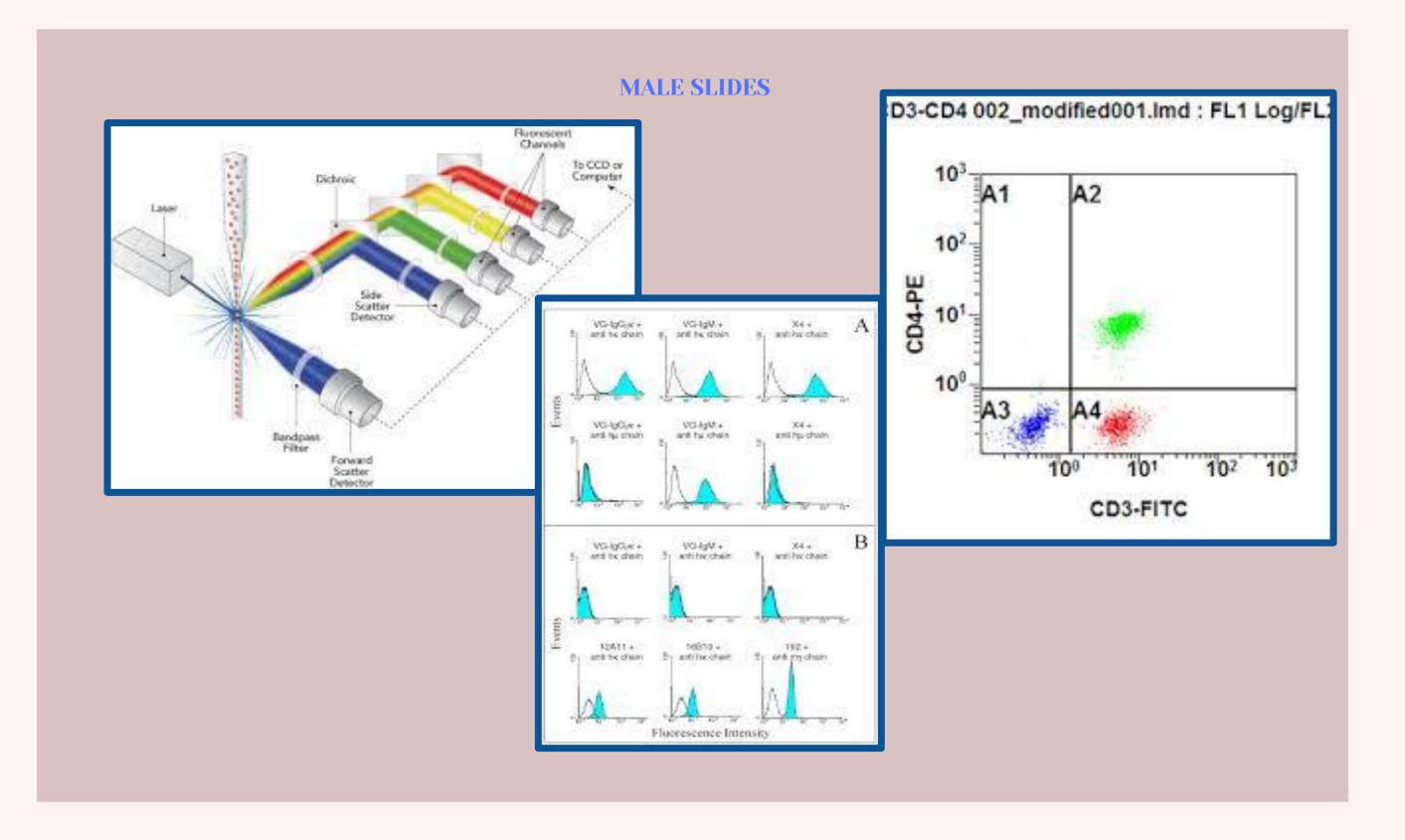


Morphologic Methods


- Immunocytochemistry (stains) offers a powerful adjunct to routine histologic examination.
- Detection of cytokeratin (CK) by specific monoclonal antibodies
 labeled with peroxidase points to a diagnosis of undifferentiated
 carcinoma rather than large cell lymphoma.
- Detection of prostate-specific antigen (PSA) in metastatic deposits by immunohistochemical staining allows definitive diagnosis of a primary tumor in the prostate.

Immunocytochemistry

MALE SLIDES



Fluorescent/staining

Advanced Methods

- **Flow cytometry** is used routinely in the classification of leukemias and lymphomas. In this method, fluorescent antibodies against cell surface (mainly), cytoplasmic and nuclear, molecules and differentiation antigens are used to obtain the phenotype of malignant cells.
- It is also a powerful diagnostic/follow up tool that has been used in many other non-neoplastic disease

Tumor Markers

• Biochemical assays for tumor-associated enzymes, hormones, and other tumor markers in the blood **cannot be utilized** for definitive diagnosis of Cancer.

• They are useful for measuring the levels of tumor associated enzymes, hormones, and tumor markers in serum.

• They can be useful **screening tests** and, in some instances, have utility in **quantitating the response** to therapy or detecting disease **recurrence**.

• Elevated levels may not be diagnostic of cancer e.g. PSA

• PSA, used to screen for **prostatic adenocarcinoma**, may be one of the most frequently and successfully used tumor markers in clinical practice.

- Prostatic carcinoma can be suspected when elevated levels of PSA are found in the blood
- The PSA test suffers from both low sensitivity and low specificity
- Only few tumor markers are proven to be clinically useful e.g. CEA & AFP.

MALE SLIDES

Trophoblastic tumors, nonseminomatous testicular tumors	
Medullary carcinoma of thyroid	
Pheochromocytoma and related tumors	
See "Paraneoplastic Syndromes" (Table 7-11)	
Liver cell cancer, nonseminomatous germ cell tumors of testis	
Carcinomas of the colon, pancreas, lung, stomach, and heart	
Prostate cancer	
Small-cell cancer of lung, neuroblastoma	
Multiple myeloma and other gammopathies	
Prostate cancer	
Ovarian cancer	
Colon cancer, pancreatic cancer	
Breast cancer	
Colon cancer	
Pancreatic cancer	
Lung cancer	
Bladder cancer	

Molecular Diagnosis

Diagnosis of malignancy

Because each **T** and **B** cell exhibits unique rearrangement of its antigen receptor genes, **polymerase chain reaction** (**PCR**)–based detection of T cell receptor or immunoglobulin genes allows distinction between **monoclonal** (**neoplastic**) and **polyclonal** (**reactive**) proliferations. Many **hematopoietic neoplasms**, **as well as a few solid tumors**, are defined by **particular translocations**, so the diagnosis can be made by detection of such translocations. Fluorescence in situ hybridization (**FISH**) **or PCR analysis** can be used to detect translocations.

- Polymerase chain reaction (PCR)
 - PCR is useful for the detection of BCR-ABL transcripts in chronic myeloid leukemia.
- Fluorescent in situ hybridization (FISH)
 - FISH is useful for detecting chromosomal translocations characteristic of many tumors.

C

Therapeutic decision-making

Therapies that directly target specific mutations are increasingly being developed, and thus detection of such mutations in a tumor can guide the development of targeted therapy, as discussed later.

Prognosis and behavior

Certain genetic alterations are associated with a poor prognosis, and thus the presence of these alterations determines the patient's subsequent **therapy**. FISH and PCR methods can be used to detect amplification of oncogenes such as HER2/NEU and N-MYC, which provide prognostic and therapeutic information for breast cancers and neuroblastomas

Molecular design

Detection of minimal residual disease

Another emerging use of molecular techniques is for detection of minimal residual disease after Treatment.

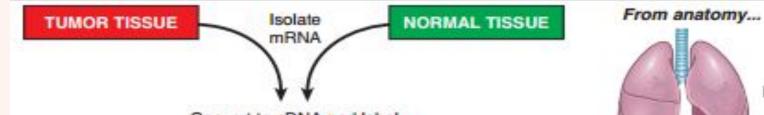
F

D

Diagnosis of hereditary predisposition to cancer

Germline mutation of several tumor suppressor genes, such as BRCA1, increases a patient's risk for development of certain types of cancer. Thus, detection of these mutated alleles may allow the patient and the physician to devise an aggressive screening protocol, as well as an opportunity for prophylactic surgery. In addition, such detection allows genetic counseling of relatives at risk.

• DNA microarray analysis:


- It evaluates the expression of thousands of genes.
- Different tissues have different patterns of gene expression.
- It is a powerful tool for subcategorizing diseases e.g. lymphomas.
- It confirms the morphologic diagnoses.
- It is useful in illustrating genes involved in certain disease & help plan possible therapies.

Molecular Profiling of Tumors

Male's SLIDES

- Expression Profiling (Microarray).
- Whole Genome Sequencing (NGS).

Expression Profiling: allows simultaneous measurements of the expression levels of several thousand genes.

... to molecular target

ALK

(Crizotinib)

Lung

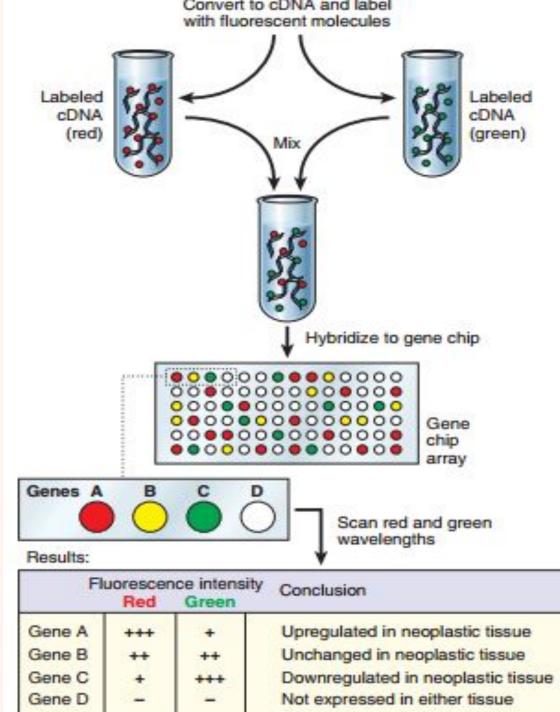


Figure 5-36 A paradigm shift: Classification of cancer according to therapeutic targets rather than cell of origin and morphology.

in the classification and therapy of tumors. Perhaps in the future the diverse group of tumors that bear a common mutation such as BRAF will be classified as BRAF-omas (Fig. 5–34), rather than individual types based on morphology or cell of origin!

Molecular Profiling of Tumors

Male's SLIDES

Whole Genome Sequencing:

Sequences of the entire tumor genomes, when compared with the normal genome from the same patient, can reveal all **the somatic alterations** present in a tumor.

> It is hoped that identification of all potentially targetable mutations in each individual tumor will refocus the treatment of tumors from the tissue of origin to the molecular lesion, as drugs **that target specific mutations** are developed.

Summary:

- •The importance and the differences between grading and staging.
- •The clinical effects of tumors (cancer cachexia and paraneoplastic syndromes).
- •The different **laboratory methods** used to diagnose tumors and other purposes.

Tumor-specific antigens	which are present <mark>only on tumor cells</mark> and not on any normal cells.	
Staging	Staging of cancers is based on the size of the primary lesion, its extent of spread to regional lymph nodes, and the presence or absence of metastases.	
Cachexia	defined as progressive <mark>loss</mark> of body <mark>fat</mark> and lean body mass,	
Grading	It is based on the cytologic differentiation of tumor cells and the number of mitoses within the tumor.	

1- Tumor antigens that are present only on tumor cells and not on any normal cells are called:

A)Tumor-specifi T	B) Tumor-associat ed antigens	C)Mutated oncogenes	D)Amplified genes
-------------------	-------------------------------------	------------------------	----------------------

2-Which of the following is an example of a differentiation antigen

expressed by tumors?

A)P53 tumor suppressor gene	B)CEA in colon carcinomas	C)HPV	D)PSA in prostatic carcinoma
--------------------------------	------------------------------	-------	------------------------------------

3- Which of the following is NOT an antitumor effector mechanism?

A)Cytotoxic T lymphocytes	B)Natural killer cells	C)Macrophages	D)Cytokines	
4- Paraneoplastic	e syndromes are cau	used by ?		
A)Tumor spread	B)Hormones appropriate to the tissue	C)Ectopic production and secretion of bioactive substances	D)Metastatic disease	
5- Cachexia is defined as:				
A)Progressive loss of body fat and lean body mass	B)Excessive calorie intake	C)Hypertension and hypokalemia	D)Breakdown of skeletal muscle proteins	

6- Grading of tu	mors is based on:			
A)Size of the primary lesion	B)Spread to regional lymph nodes	C)Cytologic differentiation of tumor cells and number of mitoses	D)Presence or absence of distant metastases	
7-Staging of cancers is based on:				
A)Cytologic examination	B)Clinical and radiographic examination	C)Presence of tumor-specific antigens	D)Immunohisto chemical stains	

8- The TNM system is used for:

A)Grading	B) Staging	C) Diagnosing	D) Assessing
tumors	tumors	cancer	host defenses

PATHOLOGY TAEM 444

Nisreen Alotaibi

Lana Alfouzan

Seeta bin aqeel

Lujain Darraj

Hessa Alamer

Sahar Alfallaj

Nora Albahily

Sadeem Alotaibi

Jana Alrumaihi

Osama Alotaibi

Abdullah Alzoom

Khalid Alkanhal

Mazen Alzahrani

pathology.444ksu@gmail.com