

Receptor Families

Lecture no. 7

Color Index:

- Main Text
- Important
- Females' Slides
- Males' Slides
- Drs' Notes
- Extra info.

(اللَّهُمَّ انفعْنِي بِمَا عَلَمْتَنِي، وَعَلَّمْنِي مَا يَنْفعُنِي وَزِدْنِي عِلمًا)

Objectives

Classify receptors into their main superfamilies.

Recognize their different transduction mechanisms.

Identify the nature & time frame of their response.

Cell Signaling/Transduction

Recognition (When ligand attaches to a receptor) Reception (When ligand activates a receptor) Transduction (Signal transduction pathway)

Response

Receptor Structure

Ligand (Drug, hormone, neurotransmitter...) recognition site

Inner catalytic domain (catalysis>break cell)

Receptor Families-Type I Ion channel-linked receptors

Synonyms

- Ion channel-linked receptors
- Ligand-gated ion channels (common name)
- Ionotropic receptors

Example

Nicotinic receptors that are activated by occupancy of a ligand as acetylcholine

- Located at the **cell membrane**.

(as it's on the cell membrane, it doesn't require to be lipid soluble)

- **Directly** activated by ligand binding.

(no second messenger needed)

- Directly related to ion channels.

(when the drug starts producing its effect, the effect will directly change the ion channel, open or close the channel)

- Involved in very fast synaptic transmission.
- Response occurs in milliseconds.

Extra explanation from 442:

Nicotinic receptors are only found inside ganglia for parasympathetic so it could activate any action related to parasympathetic system. The process simply will be:

Neuron transmission (Ach) is a ligand -> bind to the receptor ->the receptor will open channel-> High Na intracellular ->depolarisation ->parasympathetic response such as heart relaxation

Receptor Families-Type II

G-protein coupled receptors

Synonyms

- G-protein coupled receptors (GPCRs)
- Metabotropic Receptor

Examples

- Muscarinic receptors of Ach
- Adrenergic receptors of Noradrenaline

- The largest family that accounts for many known drug targets.
- Located at cell membrane.
- Coupled to intracellular effectors via G-protein.
- Response through ion channels or enzymes. (not direct)
- Involved in **rapid** transduction.
- Response occurs in seconds.

Receptor Families-Type II G-protein coupled receptors

G-proteins

- Regulatory proteins (regulation for intracellular events).
- Comprise of three subunits ($\alpha\beta\gamma$), **a** subunits possess GTPase activity.
- G proteins belong to the larger group of enzymes called GTPases.
- Regulate guanine nucleotides GDP, GTP.
- They bind and hydrolyse guanosine triphosphate (GTP) to guanosine diphosphate (GDP).

Guanosine triphosphate (GTP)Guanosine diphosphate (GDP)

- They are **active** 'on' \rightarrow when they are bound to **GTP**.
- They are **inactive** 'off' \rightarrow when they are bound to **GDP**.

Has different classes of receptors:	Has different receptors subtypes:	
Cholinergic R (Ach)→M Rs	 m Ach; m1, m2, m3, m4 B Adrenergic receptors;	Has differences in their relate
Adrenergic R (NA)→α & β	B1, B2, B3	G-protein classes

special thanks to 441 & 442

Extra Info for understanding

It's also recommended to study biochem lecture 10-Cell signaling & regulation before this for a better understanding.

Receptor Families-Type II G-protein coupled receptors

Receptors of this family respond to agonists by:

1	2	3	
promoting the binding of GTP to the G protein alpha (α) subunit.	GTP activates the G protein and allows it, in turn, to activate the effector protein.	The G protein remains active until it hydrolyzes the bound GTP to GDP and returns to its ground (inactive) state.	

When the G-protein trimer $(\alpha\beta\gamma)$, binds to agonist occupied receptor, the α -subunit dissociates & is then free to activate an effector.

Activation of the effector is terminated when the bound <u>GTP</u> molecule is <u>hydrolyzed</u> to <u>GDP</u> which allow <u> α -subunit</u> to recombine with ($\beta\gamma$) and returns to its inactive state.

GPCRs response to agonist

Receptor Families-Type II

G-protein coupled receptors

in excitability

Targets for G-proteins

special thanks to 443 Extra Info about exact mechanism for understanding

Receptor Families-Type II G-protein coupled receptors Second messenger Second messenger Cyclic AMP system (cAMP) Inositol phosphate system Activates Activates Adenylyl **G**-protein **G**-protein Phospholipase C cyclase enzyme Activation or inhibition of ion ATP Inositol triphosphate (IP3) Diacylglycerol (DAG) channels or enzymes: \uparrow Ca2+, \uparrow lipolysis & ↑ breakdown of glycogen to glucose Increase intracellular CAMP Protein kinase C (PKC) calcium Active protein Phosphorylation of Secretion of exocrine glands Ion channels kinase A Protein kinase A (PKA) Smooth muscle Increase in heart rate Smooth muscle contraction contraction Ligands biological amines, neurotransmitter, aminoacids, ions, lipids, peptides, light, odorant G protein-coupled receptor (GPCR) PLC: Phospholipase C PIP2: Phosphoinositol diphosphate cAMP: Cyclic AMP PLCB **IP3:** Inositol triphosphate AC: Adenyl cyclase enzyme DAG: Diacylglycerol PKA: Protein kinase A logical responses cellular metabolism, hormone secretion PKC: Protein kinase C behavior & mood regulation. mune system, sensory activity TF

Types of G-protein according to their $\alpha\text{-subunits}$:

	Gs	Gi	Gq
Effect of the effector	S timulation	Inhibition	Stimulation
Pathway	cAMP-dependent pathway	cAMP-dependent pathway	Inositol phosphate system
Examples	B1&2 Adrenoceptors	 M2 & M4 Ach α2 Adrenoceptors 	 M1 & M3Ach α1 Adrenoceptors

Example of GPCRs:

Receptor	G-protein	Effect	Pharmacological activity
B1&2 Adrenoceptors	Gs	Stimulate AC	 B1→Stimulation (tachycardia) B2 → Vasodilatation
 M2&M4Ach α2 Adrenoceptors 	Gi	Inhibit AC→Dec cAMP→ Opening of K-channels	 M2 → Heart (Bradycardia) M4→Analgesia α2 → Inhibit transmitters release
 M1&M3Ach α1 Adrenoceptors 	Gq	Stimulate PLC	 M1 → Enhance cognitive function M3 & α1→Contraction of Smooth muscles

Receptor Families-Type III Enzyme-Linked receptors

- Located at the cell membrane.
- Linked to an enzyme (with intrinsic enzymatic activity).
- Response occurs in minutes to hours.
- Involved in response to hormones and growth factors.
- They control many cellular functions as metabolism and growth.

Activation of Type III receptors results in:

- Activation of kinases as tyrosine kinase \rightarrow
- Phosphorylation of tyrosine residue on their substrates \rightarrow
- Activation of many intracellular signalling pathways in the cell.
 - E.g. Insulin receptors

Example

Tyrosine Kinase-linked receptor

Receptor Families-Type IV Nuclear receptors

Synonyms

- Nuclear Receptors
- Gene Transcription Receptors

- Located intracellularly.
- Directly related to DNA (Gene transcription).
- Activation of receptors either increase or decrease protein synthesis.
- Response occurs in hours or days and persists longer.
- Their natural ligands are lipophilic hormones; steroids, thyroids, and estrogenic.
- They possess an area that recognises specific DNA sequences in the nucleus which can

bind it. This sequence is called a **Responsive Element [RE]**.

- The activated receptors are **acting as TRANSCRIPTION FACTORS [TF]** \rightarrow expressing or repressing target genes.

Receptor Families

	Type I ion channel-linked	Type II G-protein coupled R (G-PCR)	Type III Enzyme-linked R	Type IV Receptors linked to gene transcription
Location	Membrane	Membrane	Membrane	Nucleus Must be lipid soluble
Coupling	Direct	G-protein	Direct	Via DNA
Synaptic Transmission	Very fast	Fast	Slow	Very Slow Because human body take a long time to synthesize proteins
Response	Milliseconds	seconds	Minutes to hours	Hours to days
Example	Nicotinic receptors	Muscarinic receptor Adrenergic receptor	Insulin Receptors	Estrogen steroid receptors
Effectors	Channels	Channels (1st message)/Enzymes (2nd message)	Enzymes	DNA (in a specific sequence of a gene)

MCQS

Q1)Which GTP protein subunit has enzymatic activity ?				
a) α	b)ß	с)ү	d)all	

Q2) Another name for a Metabotropic Receptor is :				
a)Nuclear receptors b)G-protein coupled c)Ion channel linked receptors d)IEnzyme Linked receptor				
Q3) All receptors are found on cell membrane except?				
a)Type I	b)Type IV	c)Type III	d)Type II	

Q4) An example of Type II receptor is :				
a)Insulin receptors	b)Nicotinic acetylcholine	c)Muscarinic & Adrenergic	d)Estrogen Steroid	
	receptor	receptors	receptors	

Q5) Function of Gq protein is	:		
a) stimulates Inosotol	b)inhibits cAMP dependent	c)inhibits Inosotol	d)stimulates cAMP
phosphate system	pathways	phosphate system	dependent pathway

Team Leaders:

• Meshari Alharbi

• Shoug Albattah

Team Members:

- Suhail Alharthi
- Ziyad Bukhari
- Faisal Alomran
- Saleh Alotaibi
- Abdulaziz Alanazi
- Rakan Almutib
- Faris Alturaiki
- Ali Alabdulazem
- Saud Alsaeed
- Yazeed Alghaze

- Aljawharah Alyahya
- Shadin Alabbas
- Joud Binkhamis
- Basmah Fahad
- Jenan Alsayari
- Shaden Alotaibi
- Jana Alomairini
- Noreen Almarabah
- Madaen Alarifi
- Nisreen Alotaibi