

4 E D 4 4

Editing file

Color index:

- Main Text
- IMPORTANT
- Girls' slides only
- Boys' slides only

 \ominus

- Extra Info
- Drs Notes

Haemostasis 2

0⁰

Hemostatic Mechanisms:

- Vessel wall
- Platelet
- Blood coagulation
- Fibrinolytic system

 \bigcirc

Clotting Factors

Factors	Names		-Plasma
I	Fibrinogen		 White blood cells Platelets
II	Prothrombin	-	-Red blood cells
III	Thromboplastin	U	
IV	Calcium		
V	Labile factor	Circula	ate
VII	Stable factor	in inac	tive
VIII	Antihemophilic factor A	sate	
IX	Antihemophilic factor B		
×	Stuart-Power factor		
XI	Plasma thromboplastin antecedent		
	(PTA)		
XII	Hagman factor		
XIII	Fibrin stablizing factors		

Role in Calcium ions in clotting:

No Ca++ means no clotting.
Blood samples are prevented from clotting by adding:
Citrate ions -> Deionization of Ca++
Oxalate ions -> ppt the Ca++

 \oslash

° , 00

Intrinsic pathway	Extrinsic pathway	
Initiated by injury to the blood vessels	Initiated by trauma to the tissue	
Both activated by factor x		

 \bigcirc

Blood coagulation

A series of biochemical reactions leading to the formation of a blood clot This reaction leads to the activation of thrombin enzyme from inactive form prothrombin Thrombin will change fibrinogen (plasma protein) to fibrin (insoluble protien)

Prothrombin

(inactive thrombin) is activated by a long intrinsic or short extrinsic pathway

- The trigger is the activation of factor XII by contact with foreign surfac, injured, blood vessel and glass.
- Activated factor (XIIa) -> activate XI.
- XI -> activate IX.
- IXa + VIII + platelet phospholipid + ca -> activate X .
- All clotting factor present in the blood.
- Triggered by material released from damaged tissue (tissue thromboplastin).
- tissue thrpmoplastin + VII + Ca -> activate X.
- triggered by tissue factor.
- Xa + V + PF3 +Ca (prothrombin activator) it is a proteolytic enzyme activate prothrombin-> thrombin.
- Thrombin act on fibrinogen-> insoluble thread like fibrin.
- Factor XIII + Ca -> strong fibrin (strong clot).

In male slide only

	Extrinsic pathway	Intrinsic pathway
Duration	Rapid	Slow
-	Weaker than the intrinsic pathway	More extensive. Forms more fibrin threads
Start by	Factor III (Thromboplastin or tissue factor)	Factor XII (contact factor)
Occurs	Only invivo	Both invivo and invitro
Tested by	Prothrombin time (PT)	Activated partial thromboplastin time (APTT)

 \oslash

$^{\circ}$ Regulation of coagulation:

Fibrinolytic System:

Definition:

it is the breakdown of fibrin by naturally occurring enzyme plasmin therefore prevent intravascular blocking.

- Plasmin is present in the blood in inactive form (plasminogen).
- Plasmin is activated by tissue plasminogen activators (t-PA) in blood.

- Plasmin digest intra & extra vascular deposit of $\overrightarrow{\text{Fibrin}} \rightarrow \overrightarrow{\text{fibrin}}$ degradation products (FDP)

. - Unwanted effect of plasmin is the digestion of clotting factors.

Plasmin is controlled by: -

- . Antiplasmin from the liver.
- . Plasminogen Activator Inhibitor (PAI).

Uses of Plasmin: - Tissue Plasminogen Activator (t-PA) used to activate plasminogen to dissolve coronary clots. There is balance between clotting and fibrinolysis: - Excess clotting → blocking of Blood Vessel

Excess fibrinolysis \rightarrow tendency for bleeding

Hemostatic function tests :

	Test for	Prolonged in
Bleeding time	Platelets function	Thrombocytopenia Thrombocytoasthenia
Coagulation (clotting time)	Coagulation cascade	All disorders of coagulation (Hemophilia – Vitamin K deficiency -
Prothrombin time (PT)	Extrinsic pathway	Abnormalities of the extrinsic pathway (Vitamin K deficiency)
Activated partial prothrombin time (APTT)	Intrinsic pathway	Abnormalities of the intrinsic pathway (Hemophilia)

^SBleeding disorders:

Vitamin K deficiency	Platelet defect	Coagulation factors defect	Li	ver disease	
Prothrombin, FVII, FIX, & FX require vitamin K for their synthesis	deficiency in number or defect in function. (thrombocytopenia	Deficiency in coagulation factors (e.g. hemophilia).	almos coagu are sy the liver.(almost all coagulation factors are synthesized in the liver.(E.g.hepatitis).	
	X-linked disease (genetic disorder) Affects males, females are only carriers Increase bleeding tendency. - It has (3) types			Hemophilia	
(A): Classic hemophilia, <mark>85%cases,</mark> due to VII deficiency	(B): 15% cases, due to IX deficiency	© due to absence of fa • Clinical features: Easy bruising, massive bleed after trauma or operation hemorrhages in joints	ctor XI / ing on,		

Inheritance of hemophilia :

THROMBOCYTOPENIA

PLT count upto 50,000 ul
 \clubsuit Less than 10,000 \rightarrow Fatal

- Etiology:
- A) Decreased production
- 1. Aplastic anemia 2. Leukemia 3. Drugs 4. Infections (HIV, Measles)
- B) Increased destruction
- 1. ITP. 2. Drugs. 3. Infections
- Clinical Features:
- 1. Easy bruisability
- 2. Epistaxis
- 3. Gum bleeding
- 4. Hemorrhage after minor trauma.
- 5. Petechiae/Ecchymosis.

Diagnosis:

- 1. Platelets decrease. 2. Blood trauma increase
- Clinical note: The VWF* has a dual role in hemostasis:

First: it promotes platelet adhesion to thrombogenic surfaces as well as platelet -to- platelet cohesion during thrombus formation.

second: it is the carrier for FVIII in plasma. FVII acts as a cofactor to accelerate the activation of factor X by activated factor IX in the coagulation

Anticoagulants :

Heparin:

• Liver, lungs, masts cells and basophils.

- Direct antithrombin.Prevent the conversion of prothrombin to thrombin.
- Injection only.
- 6-8 Hours. Warfarin

• Almost all coagulation factors are synthesis In the liver .

• Suppresses the synthesis of prothrombin, FVII, FIX and FX (Vitamin K dependent factors).

- Orally.
- 48 Hours

1- Thrombin activates factors:				
A- I , V , IX , XI	B-I, X, XI, XIII	C- III, IX, VII	D- I , V , VIII ,XIII	
2- Both intrinsic pathways activate clotting factor number:				
A- X	B-XII	C- VII	D- A & C	
3 Wil change fibrinogen to fibrin:				
A- Thrombin	B- Serotonin	C- Calcium	D- TXA2	

 \oslash

