

Editing file

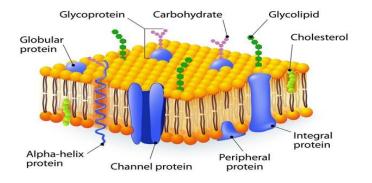
0° 0°

Color index:

- Main Text
- IMPORTANT
- Girls' slides only
- Boys' slides only
- Extra Info
- Drs Notes

Cell Membrane structure and Transport across cell membrane

Objectives


- Describe the fluid mosaic model of membrane structure and function
- Define permeability and list factors influencing permeability
- Identify and describe carried-mediated transport processes: Primary active transport, secondary active transport, facilities diffusion, simple diffusion, osmosis
- Differentiate between passive and active transport mechanisms and give examples on each.

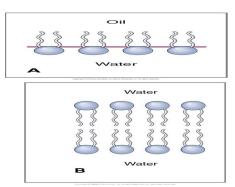
Characteristics Cell membrane

- It covers the cell
- Thin pliable and elastic 7-10nanometer
- It is a fluid and not solid
- Refer to as the Plasma membrane

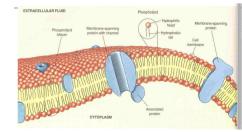
CELL MEMBRANE

Composition of cell membrane

Protein 55%

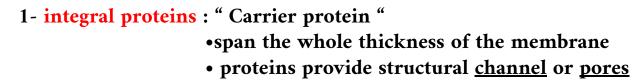

Lipid 42% : •Phospholipids 25% •cholesterol 13% •Glycolipid 4%

Carbohydrates 3%

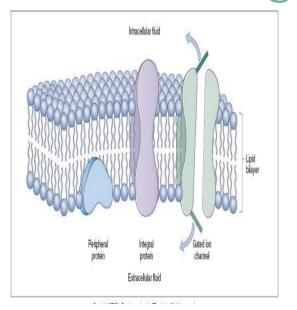

6

The Cell membrane phospholipids Consist of:

- 1- Glycerol head hydrophilic
- 2- Two fatty acid tails hydrophobic



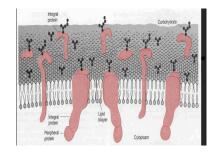
- Heads hydrophilic facing ICF and ECF, and tails hydrophobic face each other in the interior of the bilayer
- It is called Amphipathic



ိဂ

The cell membrane of Proteins:

2- Peripheral proteins : " Carrier proteins"
• Present in on side
• Hormone receptors
• cell surface antigens



The Cell membrane of carbohydrates:

- Glycoproteins : " most of it "
- Glycolipids
- Proteoglycans : mainly carbohydrates substance bound together by protein
- Glycocalyx : loose coat of carbohydrates

Function of carbohydrates :

- Attaches cell to each others
- Act as receptors substances " help ligand to recognize its receptor "
- Some enter in to immune reactions
- Give most of cells overall -ve surface

Transport Through the cell Membrane:

- Cell membrane is selectively permeable
- Through the proteins "water" soluble substances e.g. ions , glucose
- Directly through the bilayer "fat" soluble substances e.g., O2, CO2, OH

Types of membrane transport:

<mark>⊲</mark>1- <mark>Diffusion</mark>:

- Simple diffusion
- Facilitated diffusion

2- Active transport

- Primary active transport
- Secondary active transport

Ma++ ----- 1.2 mEa/L -------- 58 mEa/L CI------ 103 mEg/L --- 4 mEa/L Phosphates ----- 4 mEg/L ------ 75 mEq/L SO4 -- ----- 1 mEa/L ---2 mEq/L Glucose ----- 90 mg/dl -----0 to 20 mg/dl Amino acids ----- 30 mg/dl ---- 200 mg/dl ? Cholesterol 0.5 gm/dl--2 to 95 gm/dl Phospholipids ----Neutral fat PO2 ----- 35 mm Hg -20 mm Hg ? 50 mm Hg ? PCO2 ----- 46 mm Hg pH ----- 7.4 -----16gm/dl Proteins ----- 2 am/dl. (40 mEg/L) (5 mEa/L)

Extracellular

fluid

Na+----- 142 mEg/L --

K⁺ ----- 4 mEg/L ---

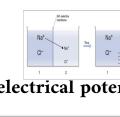
Ca++____2.4 mEg/L ---

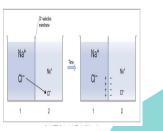
Intracellular

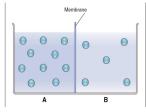
fluid

-----10 mEq/L

-----140 mEa/L


-- 0.0001 mEg/L


3-Osmosis


What is the diffusion?:

- It is Random movement of substance either through the membrane directly or in combination with carrier protein **down** an electrochemical gradient
- 1- Simple diffusion:
 - Non Carrier mediated transport down an electrochemical gradient
 - Diffusion of nonelectrolytes " uncharged " from high concentration to low concentration

• Diffusion of electrolytes "charged " depend on both chemical as will as electrical potential difference

Rate of simple diffusion depend on:

1- Amount of substance available

2- The number of opening in the cell membrane for the substance "selective" ,gating system

3-Chemicals concentration difference net diffusion = P x A(C1-C2)

شرح الرموز فقط

P = permeability coefficient , " temperature, solubility in lipids , size of molecule , thickness of membrane "

A = surface area C1-C2= gradient difference " concentration difference , electrical difference, pressure difference "

4- electrical potential difference

5-molecular size of the substance

6-lipid solubility

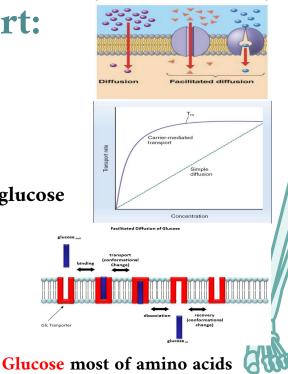
Facilitated Diffusion:

- it is a carrier mediated transport down an electrochemical gradient

Features of carrier mediated transport:

1-Saturation:

increases concentration ——> increase binding of protein If all protein is occupied we achieve full saturation


2-Stereospecificity:

The binding site recognize a specific substance **D**-glucose but <u>not</u> L-glucose

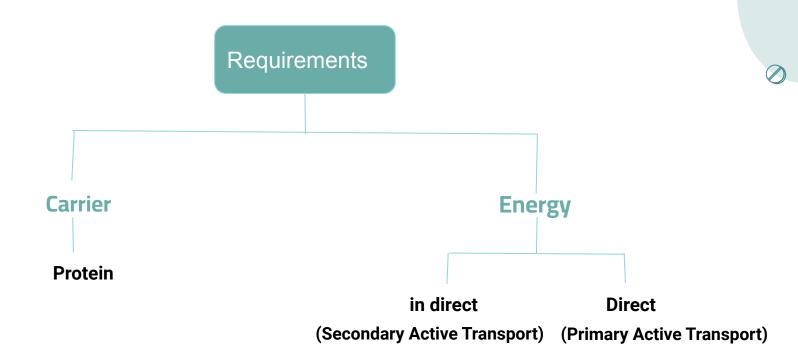
3-Competition :

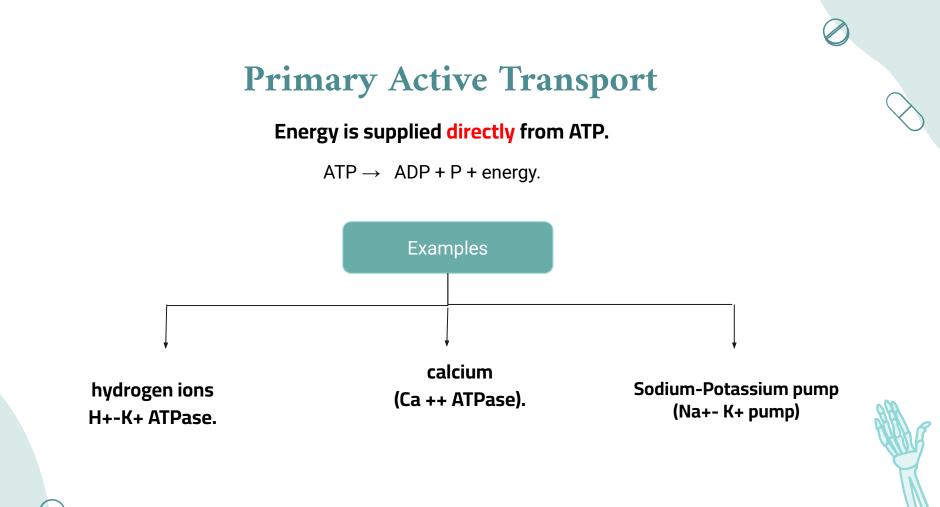
Chemically similar substance can compete for the same binding site

Substance—> binding site —> substance protein—>complex —> conformational changes release of substance

Passive transport

Active Transport


It's Transport (uphill) against electrochemical gradient


(Primary Active Transport)

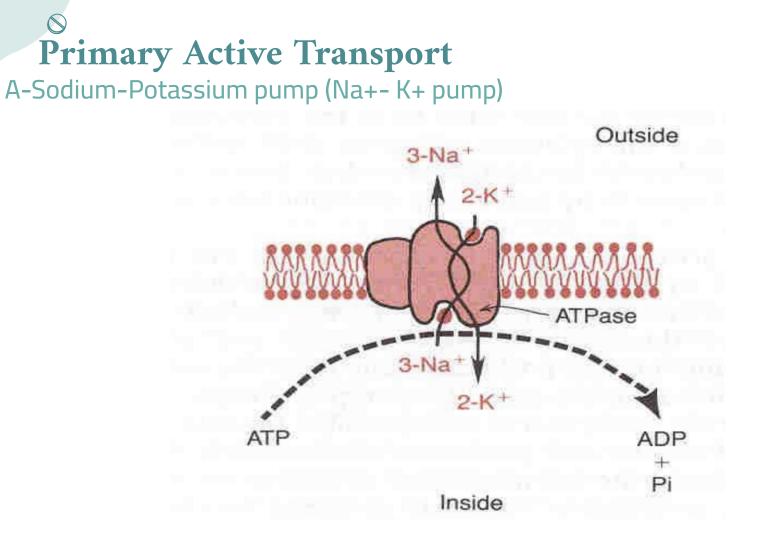
(Secondary Active Transport) Co-transport Counter transport

It's Transport (uphill) against electrochemical gradient

Primary Active Transport

A-Sodium-Potassium pump (Na+- K+ pump)

- it's present in all cell membranes.
- 3 Na+ in \rightarrow out.
- 2 K+ out \rightarrow in.


Characteristic of Na+/K+-ATPase Pump:

- 1. Carrier protein is formed from α and $\beta~$ Subunits.
- 2. Binding site for Na inside the cell.
- 3. Binding site for K outside the cell.
- 4. It has ATPase activity.
- 5. 3 Na out.
- 6. 2 K in.

Function of Na+/K+-ATPase Pump:

- 1. Maintaining Na+ and K+ concentration difference .
- 2. It's the basis of nerve signal transmition .
- 3. Maintaining negative potential inside the cell.
- 4. Maintains a normal cell volume

Note: the negative charge inside the cell more than outside

Primary Active Transport

- B. primary active transport of calcium (Ca ++ ATPase)Exists in:
- sarcoplasmic reticulum (SR).
- mitochondria.
- in some cell membranes.

Function of calcium (Ca ++ ATPase):

- Maintaining a low Ca²+ concentration inside the Cell

Primary Active Transport

C. primary active transport of hydrogen ions H+-K+ ATPase.

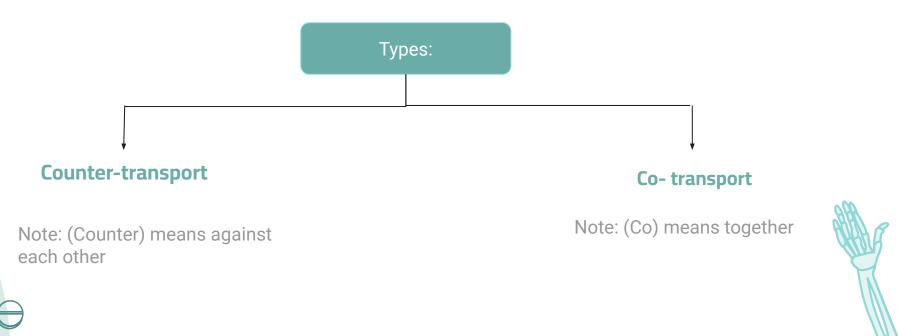
Exists in:

- stomach.

- kidney

- pump to the lumen. -

يعمل على اخراج الهيدروجين الى برا وادخال البوتاسيوم ، وينتج عند اخراج الهيدروجين ضخه في تجويف المعدة مما يسبب زيادة الهيدروجين وزيادة الحموضة بالتالى الاصابة بقرحة المعدة

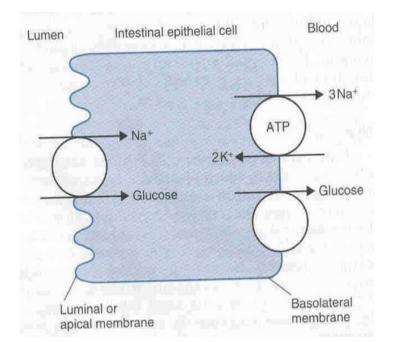

H+-K+ ATPase inhibitors: are used to treat ulcers e.g. for an inhibitor (omeprazole).

Secondary Active Transport

Energy is supplied indirectly from Primary Active Transport

- it's transport of one or more solutes against an electrochemical gradient, coupled with the transport of another solute down an electrochemical gradient.

Secondary Active Transport


1-Co-transport:

- All solutes move in the same direction " inside cell".

-present in the intestinal tract & kidneys.

e.g. Na+- glucose Co-transport. Na+- amino acid Co-transport.

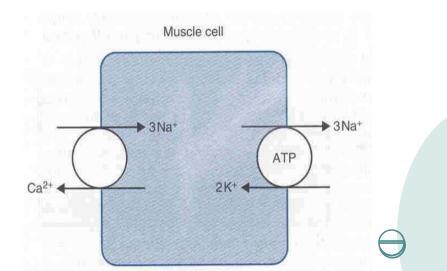
-"downhill" solute is Na+

Secondary Active Transport

2-Counter-transport:

- solutes move in against direction " one inside ,one outside cell". —> اتجاهات مختلفة واحد يطلع وواحد يدخل

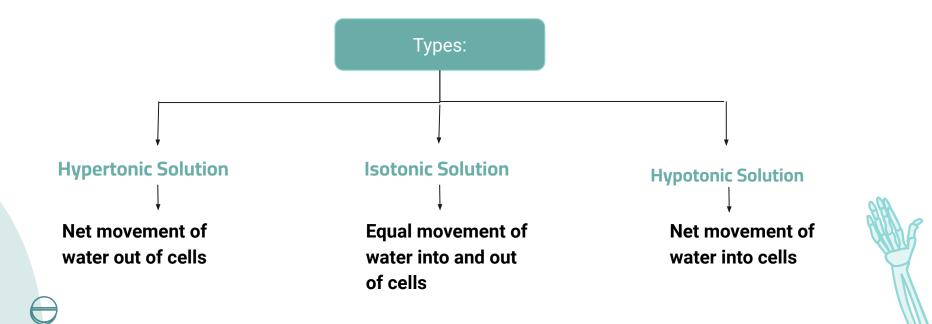
Na+ is moving to the interior of the cell causing other substance to move out.


دخول الصوديوم داخل الخلية مع اتجاه التركيز و خروج مواد اخرى لخارج الخلية على عكس التركيز

e.g

-Ca++ - Na+ exchange.

(present in many cell membranes of (muscle cell))


-Na+- H+ exchange in the kidney

Net diffusion of water from a region of high water concentration to region of low water concentration.

Osmotic equilibrium is maintained between intracellular and extracellular fluids:

- Small changes in concentration of solutes in the extracellular fluid can cause tremendous change in cell volume.

Intracellular osmolarity = extracellular osmolarity .

■ ≈ 300 mosm/L

If environment is:

Hypertonic

- MORE SOLUTES outside cell
- MORE WATER IN CELL
- over time, cell loses water

- (shrink) more than 0.9%
- out is higher than in

Isotonic

- same
- No change in cell volume

Isotonic solution :

- (not swell or shrink)
 -0.9% solution of sodium chloride or 5% glucose .
- same in and out .

Hypotonic

- LESS SOLUTES outside cell
- LESS WATER IN CELL, more solutes in cell.
- over time, cell gains water

Hypotonic solution :

- (swelling) less than 0.9%
- in is higher than out

This is just in girls slides

<u>Q1</u>	Which one is classified a hormone receptor:?			
	A: peripheral protein	B: integral protein	C: osmosis	D: all of the above
<u>Q2</u>	What are the soluble substances through protein:?			
	A: 02	B: CO2	C: OH	D: glucose

<u>Q3</u>	Phospholipids are considered:			
	A : hydrophobic	B: Amphipathic	C: hydrophilic	D: none of them

A -1 2- D 8 -8


 \bigcirc

<u>Q4</u>	H+ K ATPase pump Can found in ?				
	A) Both B&C	B) Kidneys	C)Stomach	D) mitochondria	

<u>Q5</u>	In Na+/K+-pump, the binding site for Na+ is the cell				
	A) doesn't exist	B) between	C)outside	D) inside	

<u>Q6</u>	All solutes move in the same direction " inside cell".				
	A) Osmosis	B) Co transport	C) Countertransport	D) Passive transport	

