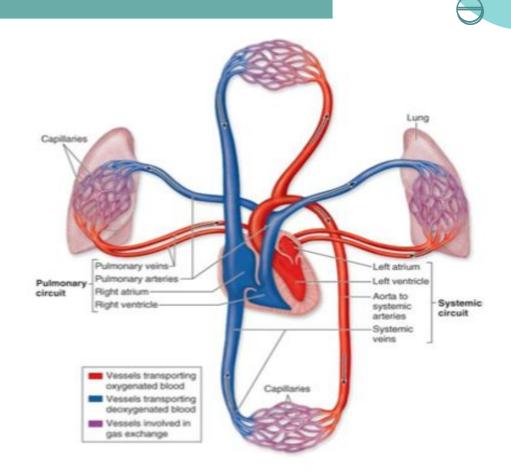
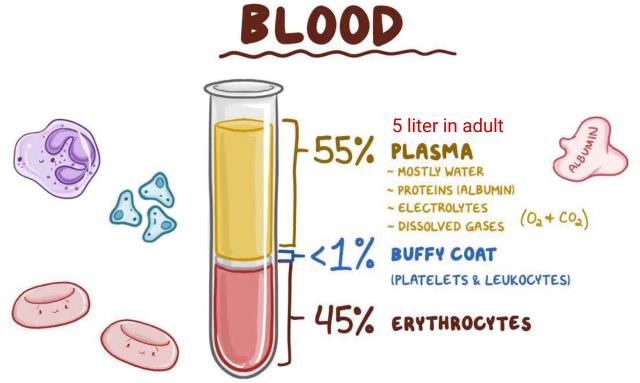


Composition and Function of the Blood

- Color index:
- Main Text
- IMPORTANT
- Girls' slides only
- Boys' slides only
- Extra Info
- Drs Notes

- Describe the physical characteristics & composition of blood
- List the common functions of blood.
- Describe the composition of the plasma.
- Enumerate the plasma proteins and mention its functions
- Define the process of erythropoiesis, Discuss its sites and stages.
- Summarize the functions of red blood cells.
- Enumerate the factors affecting erythropoiesis.
- Describe the normal structure of Hemoglobin.





Major components of circulatory system:

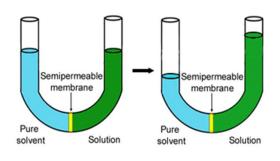
- Heart
- Blood vessels
- Blood

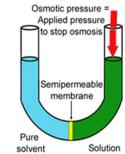
Compositions of the Blood

Some physical characteristics of the Blood

- Blood volume
- Blood makes up about 7 9 % of body weight.
- 5-6 Liters in male adult and 4-5 Liters in female adult.
- **Viscosity** (Thickness and stickiness of blood)
 - Blood is thicker than water(<u>more viscous</u>)
 - Plasma at 37°C is about 1.8-times more viscous than water
 - Whole blood viscosity (relative to water) = 4.5-5.5

- pН
- Slightly alkaline: 7.4 (Neutral body pH)
- Ranges from 7.35 to 7.45
- Color
- Bright red = O2 rich
- Dull red = O2 poor
- Osmolarity
 - Plasma osmolarity is about 300 mOsmol/L
 - Plasma osmolarity is equal to the osmolarity of Normal Saline = 0.9% NaCl Solution. Hence, Normal Saline is an Isotonic solution





- Osmotic pressure is the pressure necessary to prevent net movement of water (in osmosis)
- osmotic pressure is the pressure developed by solutes dissolved in water working across a selectively permeable membrane.
- total plasma osmotic pressure is about 5540 mmHg.
- If the osmotic pressure is low this could lead to Edema which is accumulation of fluids in the interstitial space

Osmotic Pressure

The minimum pressure that stops the osmosis is equal to the osmotic pressure of the solution

Functions of the Blood

Transport

- Oxygen from the lungs and nutrients from the digestive tract
- Metabolic wastes from cells to the lungs and kidneys for elimination
- Hormones from endocrine glands to target organs

Homeostasis

- Appropriate body temperature by absorbing and distributing heat
- Normal pH in body tissues using buffer systems
- Adequate fluid volume in the circulatory system

Haemostasis

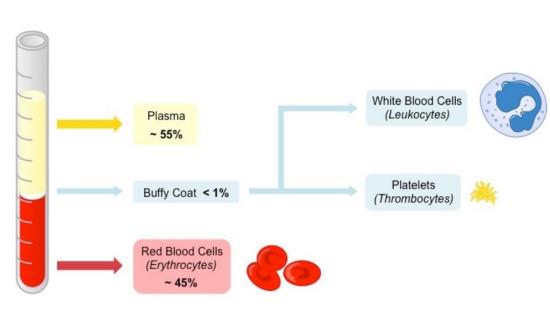
- Activating plasma proteins and platelets
- Initiating clot formation when a vessel is broken

Immunity

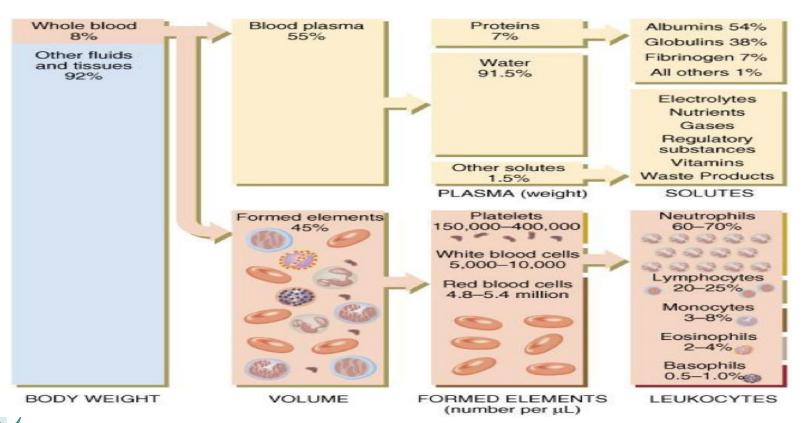
- Synthesizing and utilizing antibodies
- Activating WBCs to defend the body against foreign invaders

Composition of the Blood

- RBCs makes up 45% or we can name it hematocrit
- Red Blood Cells (Erythrocytes)
- White Blood Cells, or (Leukocytes)
- Platelet, or (Thrombocytes)
- Types of WBCs: Boys slides

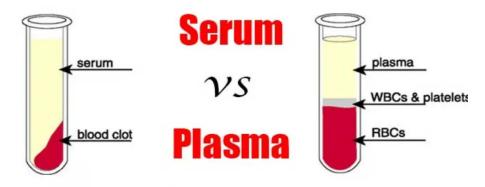

Granular leukocytes:

- 1- Neutrophils
- 2- Eosinophils
- 3- Basophils


Agranular leukocytes:

- 1- Lymphocytes
- 2- Monocytes
- Plasma

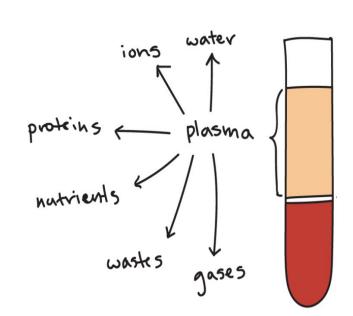
constituent of the ECF



Important

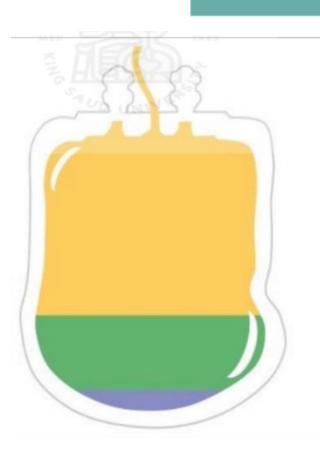
PLASMA

- Plasma = whole blood minus cells.
- Serum = plasma minus clotting proteins.
 - If whole blood is allowed to clot then the clot is being removed, the remaining fluid is SERUM.
 - Thus, serum does not contain coagulation factors.



Serum = Plasma – Clotting Factors

Constituents of plasma



- 90% water.
- 6-8% plasma proteins.
- 1% electrolytes (NA+,K+)
- 1-3% other solutes including:
 - Nutrients (e.g. glucose, amino acids, vitamins)
 - Hormones
 - Wastes
 - Blood gase

Plasma proteins

protein Major Types:

Albumin (60%)

Major component of osmotic pressure of plasma

Globulins (35%)

Antibodies (immunoglobulin) and transport proteins

Fibrinogens (4%)

Functions in blood clotting

■ Other (<1%)

Various roles (α-1-antitrypsin, coagulation factors, etc.)

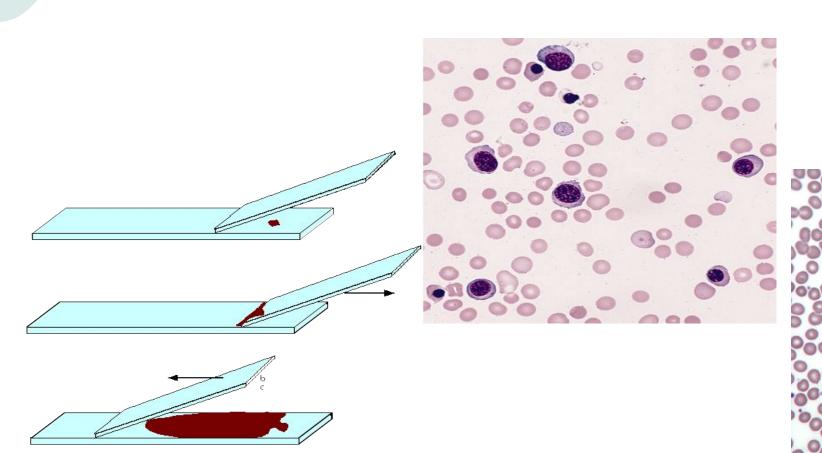
Plasma proteins functions

- Generation of plasma colloid osmotic pressure(oncotic pressure)

 (albumin)
 - *Albumin is the most abundant protein in plasma
- Buffering function of plasma proteins:
 plasma proteins are responsible for 15% of the buffering capacity of
 the blood
 (All types of plasma proteins)
- Nonspecific carriers
 for various hormones (e.g., cortisol, thyroxin), other
 solutes (e.g. iron, cupper), and drugs
 (Albumin + a Globulins)
- Defence
 (Gamma globulins are antibodies Y Globulins)
- Blood clotting
 (Fibrinogen, prothrombin, β Globulins)

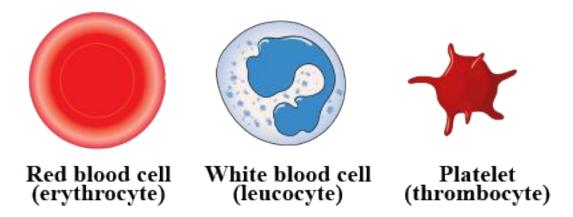
Functions of Globulins

*Alpha Globulin : Transport proteins


*Gamma Globulin :
Defensive
proteins=Antibodies=immunoglobulin

*Beta Globulin:Coagulation factors

Blood Film (Blood Smear)



- RBCs = Erythrocytes
- WBCs = Leukocytes
- Plateletes = Thrombocytes

Eryhtropoiesis Leukopoiesis Thrombopoiesis

*Site: All occurs in the bone marrow

Red Blood Cells (RBCs)

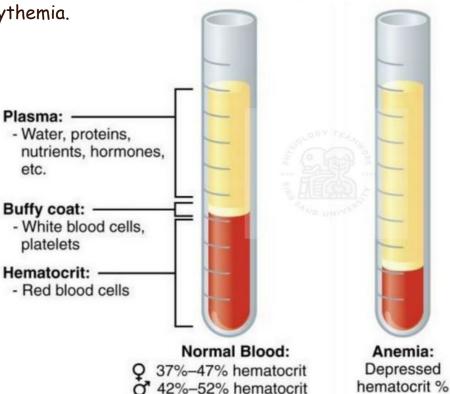
Shape & Size:

- Flat Biconcave disc(due to the presence of the protein Spectrin in the cell membrane)
- Non-nucleated
- Thickness: 2 μ
- Diameter 7-8
- Flexible
- Average volume 90-95 μm³
- Number: 4-5 million

Contains:

- Haemoglobin: (For Gas transport) Hb: 14-16 g/dl
- 2 3 DPG enzyme: For anaerobic glucose metabolism, controls the affininty for Oxygen binding
- Doesn't have: mitochondria, ribosomes, endoplasmic reticulum or Golgi apparatus
- In males 5,200,000 (\pm 300,000) / Cubic micron (μ 3). In females 4,700,000 (\pm 300,000) / Cubic micron (μ 3)..

Function:

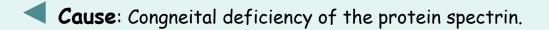

- 🛘 O2 transport
- © CO2 transport
- Buffer

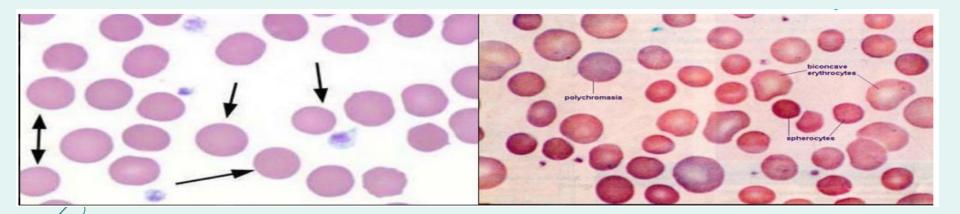
Red Blood Cells (RBCs)

- Production of RBC
 In -utero:
- Early few weeks of embryo nucleated RBCs are formed in yolk sac.
- Middle trimester mainly in liver & spleen & lymph nodes.
- Last months RBCs are formed in bone marrow of all bones After Birth:
- Bone marrow of flat bone continue to produce RBC into adult life.
- Shaft of long bone stop to produce RBC at puberty while epiphysis continue..

Hematocrit; Hct (PCV)

If decreased = Anemia
If increased = Polycythemia.




Polycythemia: Elevated hematocrit %

- Manifestation: Anemia + spherical RBCs instead of the normal biconcave shape.
- ■On blood film: Loss of central pallor. Maybe polychromasia.

1- Blood makes up aboutof body weight.

A- 7% B- 9% C- 6% D-5%

2- Agranular leukocyte

A- monocytes B-neutrophils C- eosinophils D- basophils

3- Which of the following statements is false?

A-The plasma proteins are responsible for 15% of the buffering capacity of the blood.

B- γ-Globulins are antibodies.

C-Most of the plasma proteins are Globulins.

D- Plasma proteins can function as a nonspecific carrier for various hormones, other solutes, and drugs.

1- Blood makes up aboutof body weight.

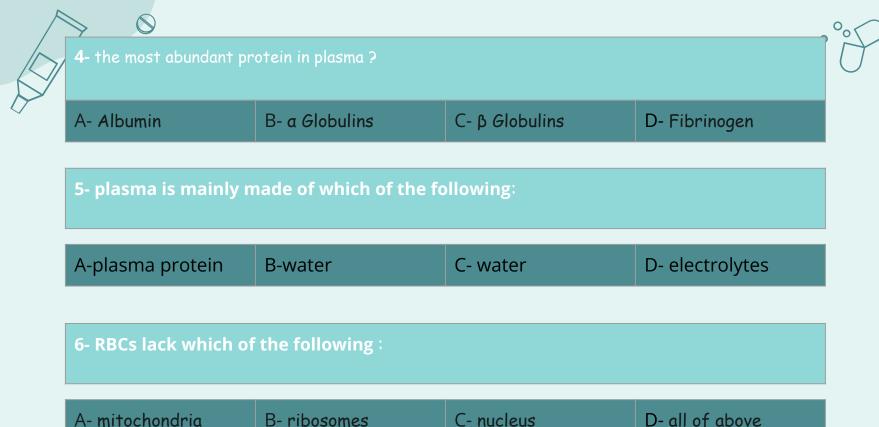
A- 7% B- 9% C- 6% D-5%

2- Agranular leukocyte

A- monocytes B-neutrophils C- eosinophils D- basophils

3- Which of the following statements is false?

A-The plasma proteins are responsible for 15% of the buffering capacity of the blood.


B- γ-Globulins are antibodies.

C-Most of the plasma proteins are Globulins.

D- Plasma proteins can function as a nonspecific carrier for various hormones, other solutes, and drugs.

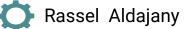
SAQs

1- why is water reabsorbed back into the capillaries?

2-which class of globulins in the blood plasma used for defence?

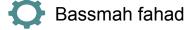
Answers
1-due to osmotic
pressure that caused
by the concentration
of plasma proteins.
2-gamma globulin

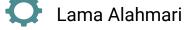
Team Leaders:

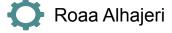

Basmah Ali Alghamdi

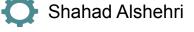
Rakan Abdullah Alwadani

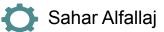
Team members:

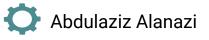




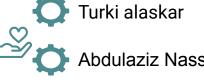












Contact us through: physiology.444ksu@gmail.com

