Lectures

- Histo (CNS)
- anatomy (organization of CNS)
- Anatomy (spinal cord)
- Anatomy (sensory tracts)
- Anatomy & physiology (brain stem)
- Physiology (motor tracts)
- Physiology (synapses & receptors)
- Physiology (spinal cord functions & reflexes)
- Physiology (stretch reflexes)
- Histo (eye)
- Anatomy (2,3,4,6 CN)
- Physiology (refraction, accommodation & pupillary reflex)
- Physiology (accommodation & Pupillary reflexes)
- Anatomy (ear)
- Physiology (hearing)
- Anatomy (nose) & physiology (smell)
- Comparison between (Auditory, Vision, Olfactory, Taste)
Histo (CNS)

- **Astrocytes** *(Most common)*
 - Repair Injury of CNS tissue *(gliosis)*
 - Support & Nutrition
 - Form BBB
- **Oligodendrocytes**
 - Formation of myelin sheath in CNS
 - Insulation
- **Microglia** *(bone marrow derived)*
 - Phagocytosis
- **Ependymal Cells**
 - Simple columnar Epithelial Cells
 - Lining brain ventricles & Central canal of spinal cord

anatomy (organization of CNS)

- **nervous system**
 - Collection of sensory input
 - Integration
 - Motor output
- **Autonomic + endocrine**
 - Homeostasis
- **Basal nuclei**
 - voluntary motor activities.
- **Cerebellum**
 - precise coordination for body movement
 - helps maintain equilibrium.
- **glia cells**
 - supporting and nutrition for neurons.

Anatomy (spinal cord)

- **filum terminale**
 - anchors spinal cord to coccyx
- **denticulate ligaments**
 - attach the spinal cord to the dura mater
- **Substantia Gelatinosa (II)**
 - pain, temperature, crude touch
- **Nucleus Proprius (IV)**
 - fine touch, proprioception, 2 point discrimination, vibration
- **Nucleus Dorsalis (VII)**
 - Proprioception *(from muscle spindles & tendon organs)*
- **Renshaw cells**
 - Feedback **inhibition** on motor neurons
- **Dorsal Rami**
 - movements of the vertebral column

Anatomy (sensory tracts)

- **Dorsal Column**
 - Proprioception, discrimination, 1/2 crude touch, stereognosis, fine touch
- **Spinothalamic** *(Lateral)*
 - pain, temperature
- *(Ventral)* 1/2 crude touch*(non discriminative), pressure
- **Spinocerebellar**
 - **Posterior** – inferior peduncle / **Anterior**- superior peduncle.
 - control of posture & coordination of movements *(from muscle spindles, Golgi tendon & tactile receptors)*
 - *(unconscious proprioception)*
- **Spinotectal**
 - Movement of head & eyes toward **cutaneous** stimulation
- **Spinoreticular**
 - Perception of dull aching *(slow pain)* [RAS]
- **Spinolivary**
 - movement coordination associated with balance *(Inferior olivary nucleus)*
Anatomy & physio (brain stem)

Brain stem

- **Conduct functions:**
 - Ascending & Descending tracts between cerebral cortex & spinal cord.
- **Site of origin of nuclei & emergence of cranial nerves (from 3rd to 12th).**
- **Conjugate eye movement**
- **Integrative functions:**
 - Controls consciousness & sleep cycle through reticular formation
 - (ventral surface = motor / middle surface = sensory)

Medulla

<table>
<thead>
<tr>
<th>(Medulla) caudal closed (pyramidal)</th>
<th>Motor Decussation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centers</td>
<td>Cardiac, Respiratory, Vasomotor cough, gag, swallow, & vomit.</td>
</tr>
<tr>
<td>Spinal Nucleus of 5th sensory</td>
<td>pain & temperature, from (face, forehead).</td>
</tr>
<tr>
<td>Mid (Medulla) Medial Lemniscus</td>
<td>Sensory Decussation</td>
</tr>
<tr>
<td>Rostral open (Medulla)</td>
<td>Proprioception & deep sensation</td>
</tr>
<tr>
<td>Inferior Olivary Nucleus</td>
<td>Control of movement</td>
</tr>
<tr>
<td>(MLF) vestibulo-ocular tract (ascending)</td>
<td>Eye movements with head movements.</td>
</tr>
<tr>
<td>(MLF) vestibulospinal tract (descending)</td>
<td>Neck & trunk movement with head movements.</td>
</tr>
<tr>
<td>Vestibular nuclei</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>Nucleus Ambiguus (motor)</td>
<td>Along 9th & 10th CN. To (pharynx, larynx, palate msg & stylopharygus ms.)</td>
</tr>
<tr>
<td>Solitary nucleus (sensory)</td>
<td>Taste sensation (from the tongue) along 7th, 9th & 10th</td>
</tr>
<tr>
<td>Tectospinal tract</td>
<td>Head movements during visual & auditory tracking</td>
</tr>
</tbody>
</table>
Pons (caudal)

<table>
<thead>
<tr>
<th>Center</th>
<th>Respiratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoid Body(lateral lemniscus)</td>
<td>Hearing</td>
</tr>
</tbody>
</table>

Midbrain

<table>
<thead>
<tr>
<th>Periaqueductal Gray</th>
<th>analgesia & pain desensitization (endogenous opioids)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cerebral peduncul)Crus Cerebri (UMN)</td>
<td>coordination of movement</td>
</tr>
<tr>
<td>Inferior colliculus</td>
<td>Hearing</td>
</tr>
<tr>
<td>Superior colliculus</td>
<td>reflex movements of the eyes, head & neck in response to visual stimuli</td>
</tr>
<tr>
<td>Red nucleus</td>
<td>motor control (Rubrospinal tract)</td>
</tr>
<tr>
<td>Substantia Nigra</td>
<td>• motor function.</td>
</tr>
<tr>
<td></td>
<td>• part of the basal ganglia.</td>
</tr>
<tr>
<td></td>
<td>• secrete dopamine.</td>
</tr>
<tr>
<td>Central Tegmental Tract</td>
<td>many tracts project up to the cortex and down to the spinal cord.</td>
</tr>
<tr>
<td>Reticular formation (tegmentum) (LMN)</td>
<td>Respiratory & Cardiovascular centers</td>
</tr>
<tr>
<td>Reticulo spinal tracts</td>
<td>Influence a muscle tone & posture</td>
</tr>
<tr>
<td>Reticular Activating system</td>
<td>activate the cerebral cortex through the thalamus.</td>
</tr>
<tr>
<td>Raphe Nuclei (serotonergic)</td>
<td>ascending fibers – sleep</td>
</tr>
<tr>
<td></td>
<td>descending fibers – Pain desensitization</td>
</tr>
<tr>
<td>Locus Ceruleus (noradrenergic)</td>
<td>Helps in arousal & sleep- wake cycles.</td>
</tr>
<tr>
<td>Physiology (motor tracts)</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Premotor area</td>
<td>complex coordinated movements, certain posture to perform a specific task</td>
</tr>
</tbody>
</table>
| **Supplemetary cortex** | ● planning & programming motor sequences
 | ● bilateral movement |
| **Betz cells (layer 5)** | most rapid rate of transmission, inhibit adjacent regions of the cortex, sharpening” the excitatory signal |
| **Corticobulbor tract** | control face & neck muscles, facilitate tone (mastication, swallowing) |
| **corticospinal tracts** | ● stretch reflex by Facilitating muscle tone via gamma MN.
 | ● sensory-motor coordination by alpha MN.
 | (Lateral) fine, discrete skilled movement of Distal limb ms.
 | (Monosynaptic)
 | (Ventral) control axial, proximal ms. & posture (balance)
 | (Interneuron) |
| **Column of Neurons** | integrative processing – unit & amplifying system |
| **Dynamic neurons** | initial rapid development of force (short period) |
| **Static neurons** | maintain the force of contraction (long period)
 | (greater percentage in the primary cortex area) |
| **Primary Motor Cortex (Area Pyramidalis) is essential For** | Voluntary initiation of finely controlled movements, especially of hands & fingers. |
| **Extrapyramidal tracts** | ● Sets the postural background
 | ● subconscious gross movements |
| **Rubrospinal (red nucleus)** | ● inhibitory to Distal limb motor neurons (extensor ms.), & control skilled movements (sitting) (opposite of lateral corticospinal)
 | ● facillatory (flexor ms.) |
| **Tectospinal** | turning of the head in response to visual/ Auditory stimuli |
| Vestibulospinal | • Controls eye move. Postural & righting reflexes
| | • **Excitatory** to ipsilateral spinal MN that supply axial & posotural ms.
| | • selectively control the **excitatory** signals to the **antigravity ms.** *(equilibrium)* with pontine reticular
| | (Lateral)-**excitatory** extensor motor neurons to maintain posture *(ipsilateral)* from *(Deiter’s nucleus)*
| | (Medial)(MLF)-
| | • coordination of head & eye movements *(ascending)*
| | • control the posture *(descending)* *(both Bilaterally)*

| Reticulospinal | • Influence motor functions *(voluntary & reflex Movement)*.
| | • Excitatory/inhibitory to muscle tone.
| | **Pontine (Medial) [bulboreticular]**
| | • **Increases** Gamma efferent activity *(excitatory=↑muscle tone)*.
| | • **Exciting** anti-gravity, extensor ms., inhibit flexor ms. *(As vestibulospinal tract)*
| | **Medullary (Lateral)**
| | • **Inhibits** Gamma efferent activity *(inhibitory=↓muscle tone)*.
| | • **Inhibiting** anti-gravity, extensor ms.

| Olivospinal Tract (cervical) | control of **movement** |
Physiology (synapses & receptors)

AXON HILLOCK	Synaptic input is converted to a nerve impulse
Conjoint Synapse lateral vestibular nucleus	balance & equilibrium
Excitatory NT	ACH, glutamate
Inhibitory NT	GABA, glycine
Metabotropic receptor (Slow)	Memory, Intracellular enzymes activation, gene transcription
IONOTROPIC (fast)	
Spatial summation	When EPSP occurs in more than one synaptic knob at the same time. (Increase power)
Temporal summation	EPSPs in a pre-synaptic knob are successively repeated without significant delay, so the effect of previous stimulus is summated to the next.
EPSPs	Depolarization
IPSPs	Hyperpolarization

Physiology (ANS)

<p>| ANS | |
| - Control involuntary (subconsciously) visceral functions |
| - Visceral motor innervates non-skeletal (non-somatic) (NOT under conscious control) |
| - capable of rapidly and intensely changing visceral functions |</p>
<table>
<thead>
<tr>
<th>Physio (spinal cord functions & reflexes)</th>
</tr>
</thead>
</table>
| **Spinal Cord** | ● two-way traffic (sensory, motor)
● Generating Spinal Reflexes |
| **Convergence** | Signals from multiple inputs (neurons) unite to excite a single neuron’s multiple action potentials.
(spatial summation)
(neurons almost never excited by an AP from a single input) |
| **Divergence** | ● **Helps** to spread a single stimulus to a wide area of the spinal cord.
● important for weak signals (amplification) |
| **Reciprocal inhibition** | by GABA or Glycine prevent over activity in many parts of the brain. |
| **Reverberatory (Oscillatory) Circuit** | signal prolongation (collateral nerve fiber)
parallel fibers |
| **Afterdischarge** | **prolongs** protective response of reflex.
depends on intensity of the stimulus |
| **Synaptic delay** | minimal period of time required for transmission of a neuronal signal from a presynaptic neuron to a postsynaptic neuron |
| **Reaction time (Reflex time)** | time between application of the stimulus & the response |
| **Irradiation** | spread of excitatory impulses up and down the spinal cord
depends on the intensity of the stimulus |
| **Neuronal Recruitment** | Gradual activation (increase) of motor neurons (AHCS) on stim of afferent nerve in a reflex arc by maintained repetitive stimulus. |
| **Motor unit recruitment** | If a repetitive & stronger stimulus is maintained, gradual increase in the force of the muscle contraction |
| **Pattern of withdrawal** | results when the flexor reflex is elicited depends on which sensory nerve is stimulated.
(local sign) |
| **withdrawal reflex** | ● Contracts flexor muscle (protective)
● Relax inhibit extensor muscle of same limb
● reverse effect on opposite limb (cross extensor reflex)
(maintaining posture) |
| **Crossed extensor reflex** | ● supports the body weight against gravity |
- (longer period of afterdischarge, result from reverberating circuits)
- Reciprocal innervations (flexor)

Physio (stretch reflexes)

| stretch reflex | • maintain a normal posture
| | • oppose sudden changes in muscle length.
| | • Regulation of muscle length
| | • Genesis of muscle tone

| Nuclear bag fibers | • Can sense the onset of stretch.
| | • Can respond to rapid stretch

| intrafusal fibers | • prevent muscle injury by activating extrafusal fibres in response to force acting on the muscle.
| | • produces an antagonism of that force

| Gamma- d (plate endings) | enhances the dynamic response.
| flower spray | Measures Mainly muscle length

| muscle spindle | • PROPRIOCEPTION
| | • Maintain muscle length against rupture.

| Muscle contraction | • Stimulation of alpha motor neurons by muscle stretch.
| | • Stimulation of gamma motor neurons.
| | • Coactivation stim of both alpha & gamma.

| purpose of Coactivation | • maintains the proper damping function of the muscle spindle.
| | • Oppose sudden changes in muscle length.

| Damping | stretch reflex ability to prevent oscillation or jerkiness of body movements. (Muscle spindle)

| Muscle Tone | resistance of muscle to stretch (antigravity muscle)

| Reciprocal inhibition | prevents conflict between opposing muscles and is vital in coordinating body movements. By inhibitory interneuron (Agonist Stimulation by glutamate) / (Antagonist inhibition by GABA/ glycine)

<table>
<thead>
<tr>
<th>Supraspinal regulation</th>
<th>Control Gamma by (e.g., reticulospinal and vestibulospinal).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golgi Tendon Reflex (Disynaptic)</td>
<td>Transmit info. about: tendon tension or rate of change of tension. reciprocal innervation: Protect muscle from rupture, and tendon from avulsion & tear. By (excitatory interneuron)</td>
</tr>
<tr>
<td>Histo (eye)</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Corneal epithelium</td>
<td>Non-keratinized stratified squamous Epithelium.</td>
</tr>
</tbody>
</table>
| **Corneal endothelium** | Simple squamous Epithelium
• Formation of Descemet’s membrane.
• Keeping stroma relatively dehydrated |
| **Sclera** | Formation & secretion of melanin |
| **Canal of Schlemm** | drains aqueous humor into venous system |
| **Ciliary Processes** | Give attachment to lens suspensory ligaments (zonule fibers). |
| **Pigmented epithelium of retina** | Cuboidal to Columnar cells (single layer)
• Absorb light Prevent its reflectionback.
• Phagocytosis of membranous discs from tips of rods.
• Estrification of Vit. A in Smooth endoplasmic reticulum. |
| **Muller cells** | extend Between vitreous body and the inner segments of rods and cones. |
| **Conjunctiva** | Stratified columnar epithelium with goblet cells |

Anatomy (2,3,4,6 CN)

<p>| partial crossing at optic chiasma | requirement for binocular vision. |
| visual association cortex | involved in interpretation and recognition of objects and perception of color, depth, motion, and other aspects of vision. |</p>
<table>
<thead>
<tr>
<th>Physiology (refraction, accommodation & pupillary reflex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vision</td>
</tr>
<tr>
<td>• Discriminates between light & dark.</td>
</tr>
<tr>
<td>• Detects movement.</td>
</tr>
<tr>
<td>• Detects color (Adaptive value of color vision)</td>
</tr>
<tr>
<td>Sclera</td>
</tr>
<tr>
<td>protection-spherical appearance.</td>
</tr>
<tr>
<td>Choroides</td>
</tr>
<tr>
<td>primary source of nourishment for retinal photoreceptors & O2 to rods and cons.</td>
</tr>
<tr>
<td>Cornea (40-45 D)</td>
</tr>
<tr>
<td>RESIDENT IMMUNE CELLS</td>
</tr>
<tr>
<td>Iris</td>
</tr>
<tr>
<td>• Give eyes its color</td>
</tr>
<tr>
<td>• Pupillary reflex ms.</td>
</tr>
<tr>
<td>Pupil</td>
</tr>
<tr>
<td>Control & allow light to enter the eye</td>
</tr>
<tr>
<td>Lens (15-20 D)</td>
</tr>
<tr>
<td>• helps focus images on the retina to facilitate clear vision</td>
</tr>
<tr>
<td>• response to nervous signals from brain, its curvature can be increased markedly to provide accommodation.</td>
</tr>
<tr>
<td>(Crystallins)- makes up the refractive media of the lens</td>
</tr>
<tr>
<td>Conjunctiva</td>
</tr>
<tr>
<td>Covered with thin film of tears for Cleaning, wetness and protection</td>
</tr>
<tr>
<td>total refractive power</td>
</tr>
<tr>
<td>59 diopters (distant vision)</td>
</tr>
<tr>
<td>Aqueous Humor</td>
</tr>
<tr>
<td>Continually formed and reabsorbed</td>
</tr>
<tr>
<td>• Nourishes the cornea & iris</td>
</tr>
<tr>
<td>• causes intraocular pressure 10-20 mmhg</td>
</tr>
<tr>
<td>Vitreous Humor</td>
</tr>
<tr>
<td>remains from birth</td>
</tr>
<tr>
<td>• nourishing retina & keep spheroid shape of the eye</td>
</tr>
<tr>
<td>• allows light to pass through</td>
</tr>
<tr>
<td>External Protection Of Eye</td>
</tr>
<tr>
<td>• Bony orbit</td>
</tr>
<tr>
<td>• Lids blinking keep cornea moist</td>
</tr>
<tr>
<td>• Conjuctiva</td>
</tr>
</tbody>
</table>
- Tears from lacrimal gland has antibacterial, lubricating effect, keep moist & clear & provide nutrition to the cornea

<table>
<thead>
<tr>
<th>Retina</th>
<th>light-sensitive layer of tissue</th>
</tr>
</thead>
</table>
| **Fovea Centralis** *(yellow)* | - only cones, high visual acuity for colors, vision & details detection
- allows light to pass unimpeded to cones *(Larger representation in primary visual cortex)* |
| **Photoreceptors** | capturing light and transforming this into generator potential to be used by nervous system |
| **Müller Cells** | - architectural support structure.
- providing metabolic support to retina.
- Maintains synaptic levels of NTs.
- Differentiate into neural progenitor following (injury to the retina).
- Act as light conductor which funnels light from vitreous to rods & cons cells |
| **Concave Lenses** | neutralize the refractive power of convex lenses. |
| **Binocular vision** | - Have a large visual field.
- Cancel the effect of blind spots
- Stereoscopic vision
One eye lesion does not affect the other |

Physiology *(accommodation & Pupillary reflexes)*

| prectental region of midbrain | Pupillary reflexes & eye movement. |
| superior colliculus midbrain | - accommodation reflex & its miosis component
- control rapid directional movements of the two eyes. |
| **Accommodation** | Focusing of light in the retina, by increasing the curvature of lens. *(for near objects)* |
| **Depth Perception** | - Sizes
- phenomenon of moving parallax
- phenomenon of stereopsis or Binocular Vision |
<table>
<thead>
<tr>
<th>Purkinje images</th>
<th>reflections of objects from the structure of the eye.</th>
</tr>
</thead>
</table>
| LGB | • relay station
| | • spatial fidelity
| | • gate controls signal transmission to visual cortex
| | • color vision & detect shapes & texture |
| Magnocellular | detection of movement, depth, and flicker. |
| (1,2) | |
| Parvocellular | color vision, texture, shape, and fine detail. |
| (3,4,5,6) | |
| Primary visual | movement + shapes+ stereoscopic vision + brightness) &
| cortex | has blobs for color detection. |
| Association visual cortex | Fixation mechanism |
| Color Blobs | **(Simple cells)** detect color contrast details, bars of light,
| | lines, borders and edges. |
| | **(Complex cells)** detect linear movements of a stimulus |
Anatomy (ear+ VIII)

EXTERNAL EAR

| Nerve supply |extrinsic muscles-> facial
| |Sensation is carried by:
great auricular & auriculotemporal nerves |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auricle</td>
<td>collects air vibrations</td>
</tr>
<tr>
<td>external auditory canal</td>
<td>conducts & collects sound waves from the auricle to the tympanic</td>
</tr>
</tbody>
</table>

MIDDLE EAR (TYMPANIC CAVITY)

<table>
<thead>
<tr>
<th>Ossicles (synovial joints)</th>
<th>transmit the vibrations of tympanic M. (eardrum) to internal ear (Perilymph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditory Tube</td>
<td>equalize pressure on both sides of ear drum.</td>
</tr>
<tr>
<td>Posterior wall</td>
<td>aditus to the mastoid antrum: (contains air cells)</td>
</tr>
</tbody>
</table>
| lateral wall (tympanic membrane) | Nerve supply of ear drum:
| | • Outer surface:
| | 1- Auriculotemporal nerve. (5th)
| | 2- Auricular branch of vagus. |
| | • Inner surface:
| | 1-Tympanic branch of the glossopharyngeal nerve. (extremely sensitive to pain) |
| Tensor tympani | Nerve supply: Mandibular nerve. Action: Contracts reflexly in response to loud sounds to limit excursion of tympanic M. |
| Stapedius | Nerve supply: Facial nerve. Action: Reflexly damps down the vibrations of stapes by pulling on the neck. |
| Nerves within middle ear | 1- Tympanic nerve (9th CN)
| Give: Lesser petrosal /Supply: parotid gland
| | 2- Facial nerve (Geniculate ganglion).
| Give: | • Greater Petrosal nerve.
| | • Nerve to Stapedius.
| | • Chorda Tympani |
Inner ear

<table>
<thead>
<tr>
<th>Structure</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>utricle, saccule and semicircular ducts</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>Wernick’s area</td>
<td>recognition and processing of language</td>
</tr>
<tr>
<td>Vestibular Cortex</td>
<td>Conscious awareness of vestibular sensation.</td>
</tr>
<tr>
<td>Superior olivary nucleus</td>
<td>Send olivocochlear fibers inhibitory & serve to modulate transmission of sound to cochlear nerve</td>
</tr>
<tr>
<td>Superior olivary nucleus & lateral lemniscus nucleus</td>
<td>reflex connections with motor neurons of trigeminal and facial motor nuclei mediating contraction of tensor tympani and stapedius muscles</td>
</tr>
<tr>
<td>Inferior colliculi</td>
<td>reflex connections with motor neurons in the cervical spinal segments (tectospinal tract) for movement of head and neck in response to auditory stimulation.</td>
</tr>
</tbody>
</table>

Rostral to the cochlear nuclei The representation of cochlea is essentially bilateral at all levels. (Hearing is bilaterally represented).

Physio (hearing)

<table>
<thead>
<tr>
<th>Functions of ear:</th>
<th>Hearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic of sound</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>Pitch (Tone) depends on number of cycle/sec</td>
<td></td>
</tr>
<tr>
<td>Intensity (Loudness) depends on amplitude</td>
<td></td>
</tr>
<tr>
<td>Quality depends on overtone/interference.</td>
<td></td>
</tr>
<tr>
<td>Functions of External ear</td>
<td>funnel to collect sound</td>
</tr>
<tr>
<td>Sound localisation (pinna)</td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td></td>
</tr>
<tr>
<td>Functions of the middle ear</td>
<td>Muscles Protection effect against constant loud noise. Not sudden noise, latency of 40-80 ms</td>
</tr>
<tr>
<td></td>
<td>Middle ear magnifying effect</td>
</tr>
<tr>
<td></td>
<td>Transmission of sound through the middle ear</td>
</tr>
<tr>
<td>Ossicles amplification</td>
<td>needed for movement of sound waves in the fluid of the inner ear</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| **Functions of Inner ear** | • **Transduction:** convert sound wave to nerve impulses
• **Transmission:** send auditory signals to the CNS |
| **Outer hair cells** | control sensitivity of inner hair cells to particular sound frequency. |
| **Inner hair cells** | primary receptors for sound “hearing”
transducing fluid movement in cochlea into action potential in the auditory nerve |
| **Sound localization** | • Differences in the time arrival of the sound wave at the ears (time-lag).
• Differences in the loudness |
Anatomy (nose) & physiology (smell)

| Paranasal (Air) sinuses | • lighten skull
| | • amplify sound as we speak.
| Respiratory mucosa | • **Moisten** inspired air by secretion of serous glands
| | • **Warm** inspired air by submucous venous plexus
| | • **Clean** inspired air by ciliary action of ciliated columnar epithelium
| Nerve supply |
| general sensation | Ophthalmic & Maxillary divisions of trigeminal nerve.
| anterior part | Anterior Ethmoidal nerve
| posterior part | pterygopalatine ganglion:
| | 1-Nasopalatine, 2- Nasal, and 3- Palatine
| Arterial supply | • Sphenopalatine artery (maxillary)
| | • Ethmoidal anterior and posterior (ophthalmic)
| | • Superior labial (facial)
| Venous drainage | Cavernous sinus & pterygoid venous plexus
| Lymphatic drainage | Submandibular nodes & Upper deep cervical nodes
| olfactory segment | **pseudo-stratified columnar epithelium called olfactory epithelium (olfactory mucous membrane) which contains olfactory receptors(bipolar neuron)**
<table>
<thead>
<tr>
<th>Auditory</th>
<th>Vision</th>
<th>Olfactory</th>
<th>Taste</th>
</tr>
</thead>
<tbody>
<tr>
<td>inferior colliculus</td>
<td>superior colliculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inferior brachium to MGB</td>
<td>superior brachium to LGB</td>
<td>Receptor= bipolar</td>
<td>Receptor= Gustatory</td>
</tr>
<tr>
<td>Superior olivary nucleus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lateral lemniscus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>medial geniculate body (thalamus)</td>
<td>lateral geniculate body (thalamus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sublenticular part of the internal capsule</td>
<td>retrolenticular part of posterior limb of internal capsule</td>
<td>No thalamus relay</td>
<td></td>
</tr>
<tr>
<td>primary auditory cortex (area 41& 42) [hearing] superior temporal gyrus (Heschl’s gyrus)</td>
<td>primary visual cortex (area 17) Visual area (1)</td>
<td>Uncus</td>
<td>Anterior insular cortex. Operculum(in insula)</td>
</tr>
<tr>
<td>Auditory association areas (wernicke's area),(area 22) [interpretation]</td>
<td>visual association cortex area (18,19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestibular Cortex Lower part of postcentral gyrus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bilateral cortical connection</td>
<td>olfactory centre receives smell sensation from both halves of nasal cavity.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>