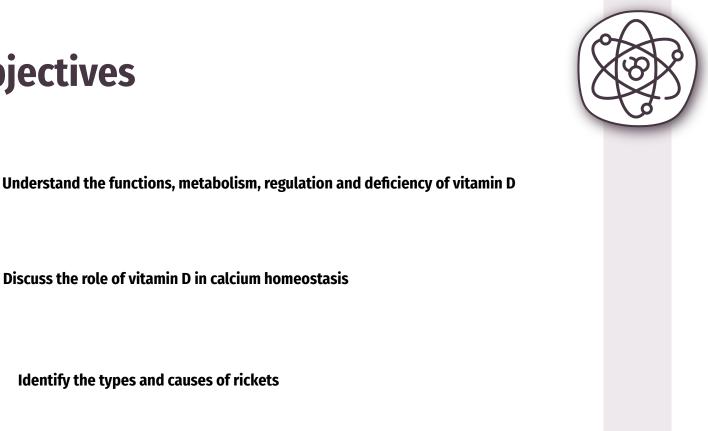


L3: Vitamin D and rickets


Presented by: Dr. Khalid AlSumaily & Dr. Rana

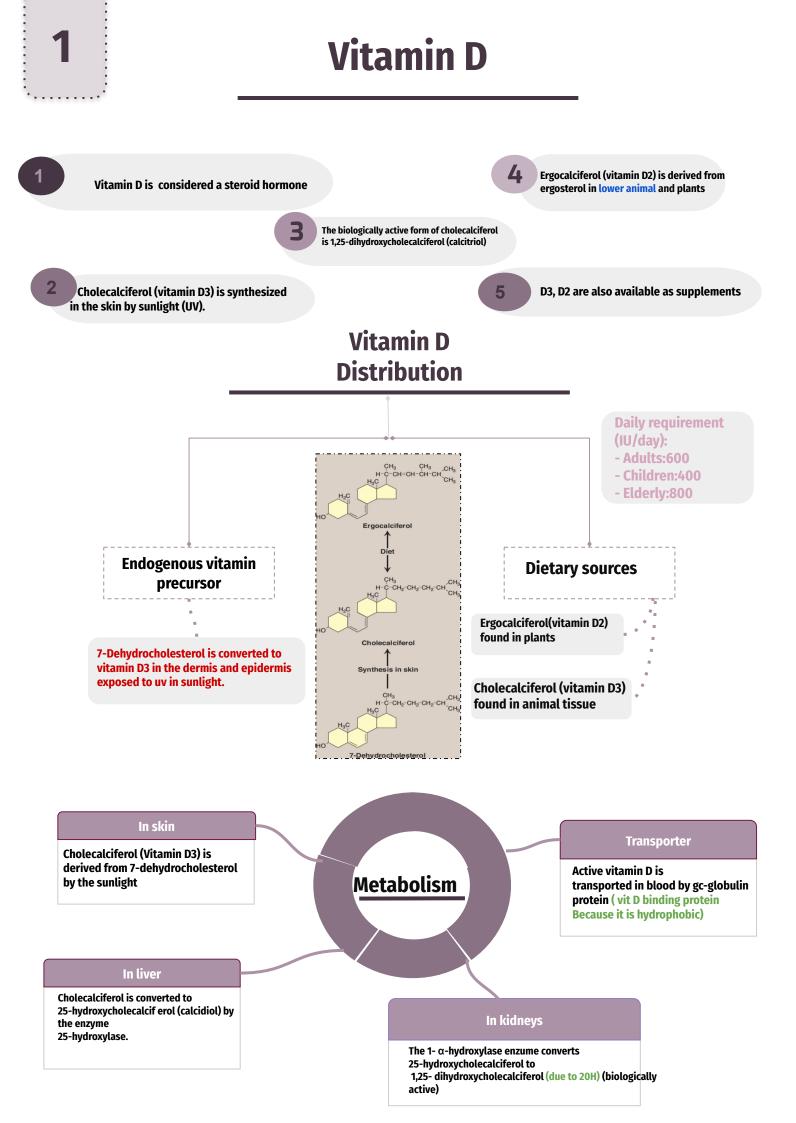
Color Index: Main Text Male's Slides Female's Slides Important Doctor's Notes Extra Info

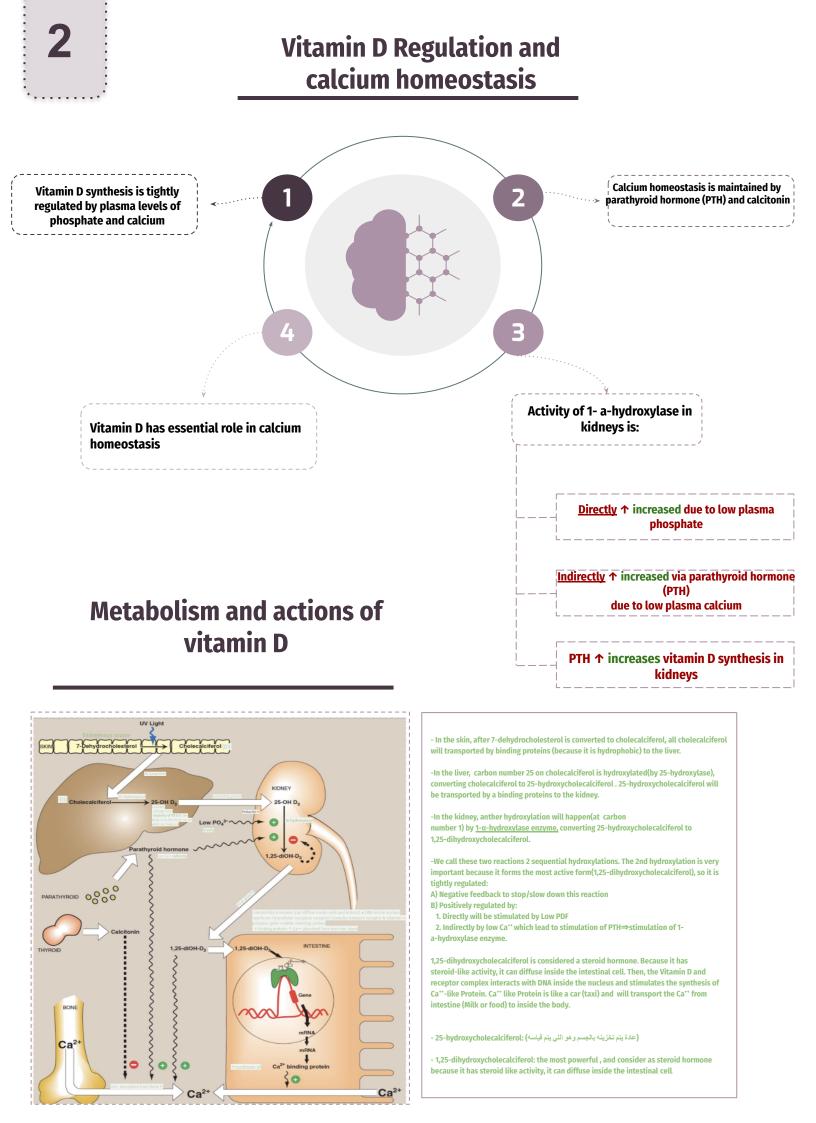
Objectives

Correlate vitamin D and calcium deficiency in osteoporosis

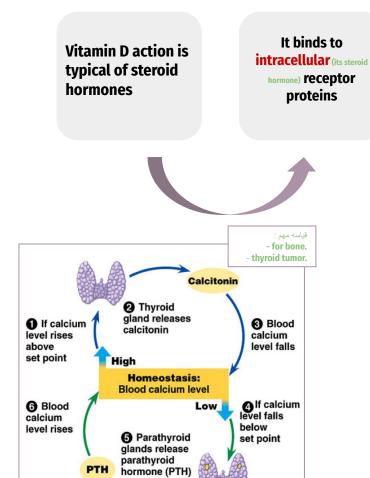
Identify biomarkers used for the diagnosis and follow up of osteoporosis

To be in touch: click on the icons


Biochemistry 443 team channel:

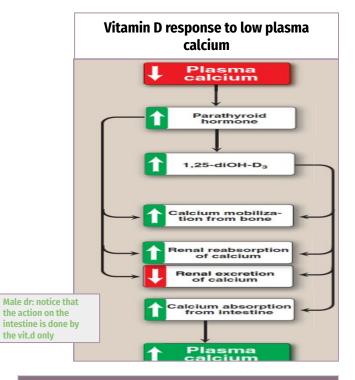


Academic Announcement channel:



Vitamin D action

Calcium homeostasis Predominant action is for parathyroid


vright @ Pearson Educ

Vitamin D functions
 Regulates plasma levels of calcium and phosphate
Promotes intestinal absorption of calcium and
phosphate
 Stimulates synthesis of calcium-binding protein for intestinal calcium uptake
Minimizes loss of calcium by the kidneys
Mobilizes calcium and phosphate from bone (biggest reservoir of Ca ⁺⁺ in the body) to maintain plasma levels

The receptor complex interacts with target DNA in cell nucleus

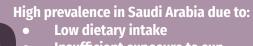
This stimulates (when we need to have more Ca⁺⁺) or represses (when we have enough Ca⁺⁺) gene expression

Daily requirement (IU/day):

Children:	400
Adults:	600
Elderly:	800
Upper limit of intake:	4000

Vitamin D intake and

toxicity (Male slides only)


High doses (10,000 IU for weeks or months) can lead to toxicity

02

Hypercalcemia and deposition of calcium in arteries and kidneys

Vitamin D deficiency

Deficiency most common worldwide

 Insufficient exposure to sun
 Lifestyle (eg. clothing esp in women) عباية Circulating level of >75 nmol/L is required for beneficial health effects

Nutritional rickets:

- A disease in children causing net demineralization of bone (مي اللي تعطي الصلابة للعظام minerals)
- With continued formation of collagen matrix of bone (normal collagen matrix but there is no minerals to make it more strong).
- Incomplete bone mineralization
- Bones become soft and pliable (تتقوس الأقدام لأنها ما تصير قوية، والوزن ينزل على الرجلين).
- Causes skeletal deformities including bowed legs
- Patients have low serum levels of vitamin D

Inherited rickets:

- Vitamin D-dependent rickets (types 1 and 2)
- Rare types of rickets due to genetic disorders
- Causing vitamin D deficiency mainly because of genetic defects in:
 - → Vitamin D synthesis
 - → Vitamin D receptor (no hormone action)

Osteomalacia(اليونة العظام):

• demineralization of bones in adults due to nutritional deficiency of Vit. D

Rickets

Cont Rickets	causes	 Vitamin D deficiency because of: Poor nutrition Insufficient exposure to sunlight Renal osteodystrophy (causes decreased synthesis of active vitamin D in kidneys) Hypoparathyroidism (hypocalcemia) (due to loss of Ca⁺⁺ Binding Protein, can't Absorb Ca⁺⁺ ⇒ even with Good nutrition).
	Diagnosis	Measuring serum levels of: • 25-hydroxycholecalciferol (low) • PTH (due to low Ca ⁺⁺ > will be high) • Calcium (low) • Phosphate (low) • Alkaline phosphatase (high)
	Treatment	Vitamin D and calcium supplementation

Osteoporosis

Osteoporosis: decrease in both collagen and mineralization, so the ratio is normal, but the whole bone mass is decreased

Definition

- Reduction in bone mass per unit volume
- Bone matrix composition is normal but it is reduced
- Post-menopausal women lose more bone mass than men (primary osteoporosis)
- الضربة البسيطة ممكن تسبب كسور مرضية Increases fragility of bones
- Increases susceptibility to fractures

Secondary steoporosis:

Caused by:

-Drugs -Cushing syndrome -Gonadal failure

-Hyperthyroidism

-Immobilization -Smoking

- -Alcohol
- -GI disease

Fig. 2 Crush fractures of vertebral bodies in a patient with osteoporosis.

Fig. 3 Elderly woman with so-called 'Dowager's hump' from collapsed vertebrae due to osteoporosis.

(a) (b) Fig. 1 Bone showing (a) normal trabeculae and (b) bone loss in osteoporosis.

Cont..Osteoporosis

Diagnosis

To follow up the treatment of osteoporosis they used to do DEXA every 2 years to measure bone density, but now they can measure these markers every 2-3 months by these markers

- WHO standard: Serial measurement of bone mineral density
- Biochemical tests (calcium, phosphate, vitamin D) alone cannot diagnose or monitor primary osteoporosis. But Rule out Osteomalacia.
- The test results overlap in healthy subjects and patients with osteoporosis
- Secondary osteoporosis (due to other causes) can be diagnosed by biochemical tests

e.g. Cushing syndrome = measure cortisol Gonadal failure = measure LH + FSH Hyperthyroidism = measure TSH + T4

Osteoporosis Markers		 1-Osteocalcin aka Bone Gla Protein #GIT Produced by osteoblasts during bone formation Involved in bone remodeling process Released during bone formation and resorption (bone turnover). The higher the bone turnover, the higher the Osteocalcin Short half-life of few minutes so its useful only in research not day-to-day patients in hospital Blood levels are influenced by vitamin K status and renal function
	Bone <u>formation</u> markers	 2-Bone-specific Alkaline Phosphatase Present in osteoblast plasma membranes Helps osteoblasts in bone formation Non-specific marker since its also found in the liver(l#GIT) and placenta Its isoenzymes are widely distributed in other tissues The isoenzymes also interfere with the assay
		 3-P1NP (Procollagen type-1 amino-terminal propeptide) Listed under resorption markers in M slides Produced by osteoblasts Involved in the process of type 1 collagen formation Shows good assay precision Stable at room temperature Blood levels are highly responsive to osteoporosis progression and treatment (best marker) P for: P1NP and Progression It's always tasted To follow up on treatment
	Bone <u>Resorption</u> markers	 1-CTX-1 (Carboxy-terminal cross-linked telopeptides of type 1 collagen) A component of type-1 collagen Released from type-1 collagen during bone resorption Blood and urine levels are highly responsive to post-resorptive treatment Levels vary largely by <u>c</u>ircadian variation(a disadvantage) N-terminal telopeptide (NTx) Is also one of the resorption markers.

Treatment	Prevention
In confirmed cases of osteoporosis Treatment options are unsatisfactory 	 Prevention from childhood is important
 Oral calcium, estrogens (for menopause lady), fluoride therapy may be beneficial 	 Good diet and exercise prevent osteoporosis later
 Bisphosphonates inhibit bone resorption that slow down bone loss أغلب الكبار يعطونهم أسبوعيًا 	 Hormone replacement therapy in menopause may prevent osteoporosis

Take home massages

- Overview of vitamin D metabolism and regulation
- Importance of vitamin D functions
- Vitamin D deficiency is common in populations
- Rickets and osteomalacia are due to vitamin D deficiency
- Various biochemical markers clinically important for assessment of osteoporosis

Test Yourself!

MCQs	Answers: 1-D 2-C 3-D 4-D	
 Q1: which on of the following is the action of 25-hydroxylase enzyme? A. converts 25-OH D3 to 1,25-diOH-D3 B. converts 7-dehydrocholesterol to cholecalciferol C. converts 25-OH D3 to cholecalciferol D- converts cholecalciferol to 25-OH D3 Q2: Cholecalciferol is synthesized by? A. Liver B. Kidney C. skin D. bones 		
Q3: Causes of secondary osteoporosis? A. Drugs B. Immobilization C. cushing syndrome D. all of them		
Q4: Which of the following biomarkers involved in bo A. PINP B. CTX1 C. Alkaline phosphatase D. Osteocalcin	one remodeling process?	
SAQs		·····

Q1: Mention 3 functions of Vitamin D?
-Regulate plasma level of calcium and phosphate -Promotes intestinal absorption of calcium and phosphate -Minimizes loss of calcium by the kidney
Q2: Enumerate the biomarkers of osteoporosis? -Osteocalcin ,CTX-1, Bone-specific alkaline phosphatase , P1NP

Yazeed AlSulaim

Almaymoni

Team Members

- Faisal AlShowier
- Mohammed AlRashed
- Abdulrahman AlOmar
- Mohammed AlEssa
 - 🕅 Mohammed AlSalamah
- Mohammed AlArfaj
- Hamad AlZomaia
- Talal AlGhadir
- Faisal AlZuhairy
- Abdulmalik AlShathri
- Abdulrahman AlOsleb
- Abo Owayed
- Yazan AlAhmari
- Fahad AlMughaiseeb
- Faris AlZahrani
- Khalid AlSobei

Razan alsoteehi

Deena

Almahawas

- Razan Alaskar
- Haya Alzeer
- Dana A Alkheliwi
- Lama Hazzaa
- Afnan Alahmari
- Shaden Alhazzani
- Wasan Alanazi
- Salma Alsaadoun
- Remas Aljeaidi
- Jana Almutlaqah