

L10:

Urea Cycle

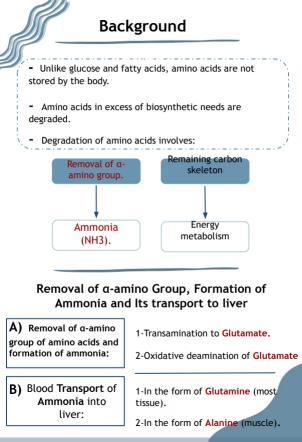
GNT Block

Objectives:

Understand the reactions for removal of $\alpha\text{-}$ amino group of amino acids and formation of ammonia.

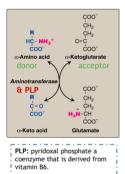
Identify the importance of blood transport of ammonia to the liver in the form of glutamine/alanine.

Understand the importance of conversion of ammonia into urea by the liver through urea cycle.

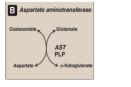

Identify urea as the major form for the disposal of amino groups derived from amino acids.

Identify the causes (hereditary & acquired), clinical manifestations and management of hyperammonemia.

Lecture presented by :


Dr. Rana Hasanato

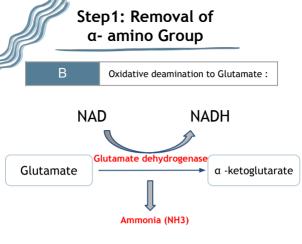
Dr. Ahmed Mujamammi


Step1: Removal of α- amino Group

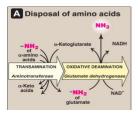
Transamination to Glutamate

Δ

Examples:



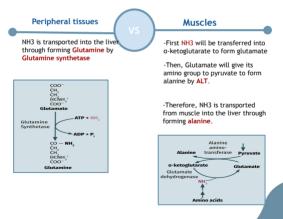
Transamination by AST


Transamination by ALT

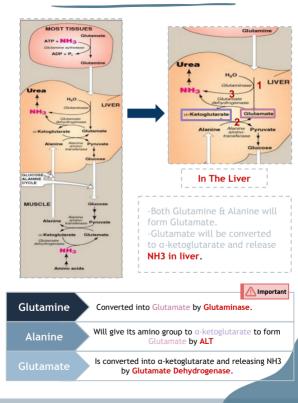
The reaction is bidirectional

Oxidative deamination of glutamate will release NH3 and regenerate $\alpha\text{-}ketoglutarate.$

Summary:


Removal of α -amino group of amino acid & formation of ammonia.

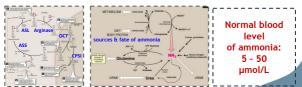
Step2: Transport of NH3 From Peripheral Tissues Into the Liver


1) Ammonia is produced by all tissues and the main disposal is via formation of urea in liver

2) Blood level of NH3 must be kept **very low**, otherwise, hyperammonemia and CNS toxicity will occur (NH3 is toxic to CNS).

3) To solve this problem, NH3 is transported from peripheral tissues to the liver via formation of Glutamine (most tissues) & Alanine (muscle).

Step 3: Release of NH3 from Glutamine & Alanine in the Liver


Step 4 : Urea cycle

Urea is the major form for disposal of amino groups derived from amino acids. urea cycle occurs in the liver.

One nitrogen of urea is from NH3 and the other nitrogen from Aspartate.

Urea is transported in the blood to the kidneys for excretion in urine

The Five enzymes of urea cycle "Important"			
Enzyme	Reaction		
1- Carbamoyl phosphate synthetase I (CPSI)	CO2 + NH3→Carbamoyl phosphate		
2- Ornithine transcarbamoylase (OCT) Most mutated Remember Oct	Carbamoyl phosphate +ornithine→Citrulline		
3- Argininosuccinate synthase (ASS)	Citrulline + AspartateArgininosuccinate		
4- Argininosuccinate lyase (ASL)	Argininosuccinate→ Fumarate + Arginine		
5- Arginase Unique to liver only, regenerates Ornithine	Arginine \rightarrow Ornithine + urea		

Step 4 : Urea cycle

Regulation of Urea cycle		
Important	N-Acetylglutamate CoA	
Rate-limiting enzyme of urea cycle	Carbamoyl phosphate synthetase I (CPSI)	
Allosteric activator of (CPSI)	N-Acetylglutamate ↑ from protein intake & catabolism → ↑ CPSI activity	
N-Acetylglutamate is synthesized by:	N-Acetylglutamate synthetase (NAGS) in presence of arginine.	
NAGS deficiency is efficiently treated with:	Carbaglu, a CPS1 activator.	

Fate of urea

The action of intestinal urease to form NH3 is clinically significant in renal failure:

Etiology		1.Liver Disease	 Acute: Viral hepatitis or hepatotoxic. Chronic: Cirrhosis by hepatitis or alcoholism
	Acquired	2.Renal failure *Important	Renal failure → ↑Blood urea → ↑Urea in the intestine → Activation of Bacterial Urease enzyme (break down urea Into CO2 +NH3) → ↑NH3 (Hyperammonemia)
	Inherited	Genetic deficiency Genetic deficiencies of any of the 5 enzymes of urea cycle or the activator enzyme for CPSI: CPSI, OTC, ASS, ASL, arginase or NAGS	Ornithine transcarbamoylase deficiency (OCT) : X-linked recessive most common congenital hyperamonemia, marked decrease of citrulline and arginine. others : autosomal recessive
Clinical Presentation	Tremors Convulsions Coma and death Vomiting and cerebral edema Lethargy and somnolence		
Management	 Protein restriction. Volume repletion to maintain renal function (Use 10% dextrose in water but limit the use of normal saline). Armonia removal by hemodialysis d/or drugs. Avoid drugs that increase protein catabolism (eg, glucocorticoids) or inhibit urea synthesis (eg, valproic acid), or have direct hepatotoxicity. 		

Treatment of Hyperammonemia

	1. I.V. Sodium phenylacetate & sodium benzoate (Ammonul)		
Drugs that scavenge ammonia by creating an alternate pathway to excrete N2-precursors	2. Oral sodium phenylbutyrate (Buphenyl). Prodrug that is converted to phenylacetate Phenylacetate condenses with Glutamine that is excreted in urine. It bypasses the liver by binding to glutamine turning it to phenylacetylglutamine to be excreted in urine, making it a great drug in case of liver Important		
	3. I.V. Arginine: for all UCDs (urea cycle enzyme deficiency) except UCD due to arginase deficiency which is the enzyme that act on arginine, so deficiency in this enzyme will lead to accumulation of arginine in blood (439) (argininemia).		
Activators to CPSI (Carglumic acid "Carbaglu")	For hyperammonemia due to NAGS deficiency		

Quiz

MCQs

Q1: one nitrogen of urea is from NH3 &	Q2: which of the following is a Urea
the other is from ? from female Dr.	cycle enzyme?
A-Arginine	A Carbamoyi phosphate synthetase I (CPSI)
B- glutamine	B - Ornithine transcarbamoylase (IOCT)
C- glycine	C - Argininosuccinate synthase (ASS)
D- aspartate	D- all the above
Q3: A unique amino acid that undergoes	Q4: what enzyme genetic deficiency is
rapid oxidative deamination is	X-linked? from female Dr
A- Alanine	A- Carbamoyl phosphate synthetase I (CPSI)
B- a- ketoglutarate.	B- Ornithine transcarbamoylase (OCT)
C- Aspartate	C- Argininosuccinate synthase (ASS)
D- Glutamate	D- Arginase
Q5: Glutamate is converted into a- ketoglutarate via: A- Glutamate dehydrogenase. B- Aminotransferase C- Aspartate aminotransferase. D- Glutamine synthetase.	Q6:which of the following considered an acquired cause of hyperammonemia? A- liver disease B- renal failure C- genetic deficiency of OCT D- A and B

SAQ

nage 11


Q: how does sodium phenyl butyrate (Buphenyl) aid in excreting ammonia/nitrogen in patients with liver disease? from female Dr.

Team Leaders

📲 Raghad Alhamid

Remas Aljeaidi

