

L11:

G6PD

GNT Block

Objectives:

Explain the biochemical basis of G6PD deficiency anemia

Recognize the precipitating factors for G6PD deficiency anemia

Classify various classes of G6PD deficiency anemia (variant enzymes)

Describe the diagnostic methods for G6PD deficiency anemia

Lecture presented by :

Dr. Sumbul Fatma

Dr. Zeyad Kurdee

Background

An alternative oxidative pathway for glucose.

No ATP production.

Major pathway for NADPH production.

Produces ribose-5-phosphate for nucleotide synthesis.

Pentose phosphate pathway (PPP)

Uses of NADPH

Antioxidant Mechanisms

Let's start with Anti-oxidant mechanisms to understand the relationship between G6PD and Anemia !

اولا، الغلية ننتهى بنتيجة Harmless : H₂O₂ transform to H₂O by Glutathione system

Reactive oxygen species (ROS)

Glutathione System

These information were written/drawn in the pictures of the dr's slides.

	GLUTATHIONE PEROXIDASE (1)	GLUTATHIONE REDUCTASE (مابقار بشتان لحاله الزم مساحر) (2)	G6PD (3) (GLUCOSE 6 PHOSPHATE DEHYDROGENASE)
SUBSTRATE	2GSH (Reduced form)	GSSG (Oxidized form)	NADP+ (Oxidized form)
END PRODUCT	GSSG (Oxidized form)	2GSH (Reduced form) Reduced glutathione is essential for maintaining the normal structure of red blood cells and for keeping hemoglobin in the ferrous state.	NADPH + H (Reduced form)
ACTION	Oxidase > loss of e ⁻ from reduced form 2GSH > become oxidized > GSSG	Reductase > gain of e' from NADPH give e- to the oxidized form (GSSG) > become reduced (2GSH)	-

- محنى ذلك إن (NADPH) هو أصل كل العماية

 So deficiency in this enzyme will decreases the anti-oxi sequence > oxidation stress in many cells

How NADPH + H can be formed ? By G6PD -In which pathway ? pentose phosphate pathway PPP -

but much severe in RBCs > lead to hemolysis > hemolysi anemia

 Why the oxidation stress is server in RBCs? Because the Other cells have other sources for NADPH production.

Oxidative stress

Imbalance between oxidant production and antioxidant mechanisms

Whenever oxidation is increased, RBC will need G6PD > if G6PD is insufficient > the oxidative stress will occur

Oxidative damage to	Oxidative stress and diseases
DNA	Inflammatory conditions e.g., Rheumatoid arthritis, Atherosclerosis and Coronary heart disease
Proteins	Obesity
Lipids (unsaturated fatty acids)	Cancers
	G6PD deficiency hemolytic anemia

G6PD Deficiency Hemolytic Anemia

Inherited X-linked recessive disease.

Most common enzyme-related hemolytic anemia.

- Highest prevalence: Middle East, Tropical Africa Asia & Mediterranean.
- -400 different mutations affect G6PD gene, but only some can cause clinical hemolytic anemia.
- G6PD deficient patients have increased resistance to infestation by falciparum malaria (1)

G6PD deficient patients will develop hemolytic attack upon the below

Irecipitating Factors or G6PD Deficiency Hemolytic Anemia

1- Intake of oxidant drugs (AAA)

Antibiotics e.g. sulfa preparation / Antimalarial e.g. primaquine / Antipyretics

2- Ingestion of fava beans

(favism, Mediterranean variant)

3- Exposure to infections (2)

4- Chronic nonspherocytic anemia

Hemolytic attack in absence of precipitating factors. Severe form due to class I mutation

Biochemical basis of G6PD deficiency hemolytic anemia

Oxidation of sufflydryl (SH) groups [because there is little or no reductive agents (NADPH)] of proteins inside RBCs causes protein denaturation and formation of insoluble masses (Heinz bodies) that attach to RBCs membranes

خير، العن عليك، الروز الفت كل حل جزان والفائن معير ؟ BIOS nil pass Struggi space خير رج بلك الذكان التي قد المراحك علي الحك الذكر كليك المروم لي محترض بيروج بلك الذكان التي قد الارجاب علي الحك الذكر كليك المروم لي محترض Torows as bite cell Although G6PD deficiency affects all cells, it is most severe in RBCs Why? Other cells have other sources for NADPH production: e.g., Malic enzyme that converts malate into pyruvate

Molecular test: Detection of G6PD gene mutation

Doctor's notes

Special thanks to 442

- 1- This happens because:
- (a) Malaria cannot live well in RBCs if they are hemolyzed
- (b) G6PD deficiency will cause an increase in free radicals which will also damage the parasite
- 2- Infections increase ROS

3- Enzymes are measured through 2 criterias: 1- Stability 2- Activity (used in this classification)

4- Results: -RBCs \rightarrow decreased Reticulocyte count \rightarrow Increased (due to compensation)

5- Screening is used in some african countries. Since malaria is prevalent in that area, these tests are done before giving anti malaria drugs to prevent extra oxidative stress.

Take home messages

- G6PD deficiency impairs the ability of cells to form NADPH.
- RBCs are particularly affected because they do not have other sources of NADPH.
- NADPH is essential for the antioxidant activity of Glutathione peroxidase/reductase system
- G6PD deficiency is an X-linked disease characterized by hemolytic anemia.
- The precipitating factors of hemolysis includes administration of oxidant drugs, ingestion of fava beans or severe infections.
- G6PD deficiency is classified according to the residual activity of the G6PD
- Class I variant (the most severe) class is associated with chronic nonspherocytic hemolytic anemia.

MCQs

Q1:HMP Is major pathway for production of? A- ATP B- NADPH C- NADH D- FADH	: Q2:G6PD deficient patients have : increased resistance to: : A- Cholera : B- Salmonella : C- Giardia lamblia : D- Malaria
Q3: HMP Produces for nucleotide	Q4: Oxidation of sulfhydryl (SH) groups
synthesis:	of proteins inside RBCs will lead to:
A - ribose-3-phosphate	A - Formation of insoluble masses (Heinz bodies)
B - glucose - 5-phosphate	B - Productive biosynthesis
C - fructose-5-phosphate	D - Reductive biosynthesis
D - ribose-5-phosphate	D - Nee of them
Q5: Which one of the following enzymes	Q6:Which one of these can produce
converts H2O2 to H2O?	NADPH?
A- Glutathione Synthetase	A- Superoxide dismutase
B- Glutathione Reductase	B- Malic enzyme
C- Glutathione Reductase	C- Glutathione Reductase
D- Superoxide dismutase	D- all of them

SAQ

Q1: Although G6PD deficiency affects all cells, why it is most severe in RBCs ?

Other cells have other sources for NADPH production: e.g., Malic enzyme that converts malate into pyruvate

Q2: What is the Uses of NADPH ?

- 1. Reductive biosynthesis e.g., fatty acid biosynthesis
- 2, Antioxidant (part of glutathione system)
- 3. Oxygen-dependent phagocytosis by WBCs
- 4. Synthesis of nitric oxide (NO)

Q3: Mention 2 factors which will lead to Hemolytic attacks in G6PD Deficient patients ?

1. Exposure to infection 2. Intake of oxidant drugs

Team Leaders

📲 Raghad Alhamid

📲 Remas Aljeaidi

