

Plasma Protein

GNT Block

Objectives:

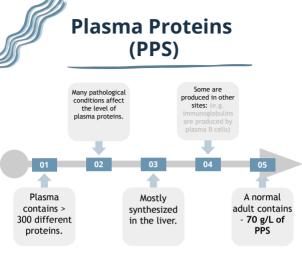
- 💡 I
 - Identify types and various functions of plasma proteins.

- Discuss the role of plasma proteins in the diagnosis of diseases and conditions.
- Interpret the normal and abnormal electrophoretic patterns of plasma proteins.

Identify the role positive and negative acute phase proteins in various diseases.

Lecture presented by :

Dr. Sumbul Fatma


Dr. Khalid Alsumaily

Female Dr. info. you should know will for all proteins : 1- where they are synthesised 2- what is their role 3what happens in deficiency. 4- is it a +ve or -ve acute phase protein.

Table of contents:

Торіс	Slides
Introduction	<u>Click Here</u>
Plasma Protein Functions	<u>Click Here</u>
Measurement of Plasma Proteins	<u>Click Here</u>
Types: Prealbumin & Albumin	<u>Click Here</u>
Albumin Abnormalities	<u>Click Here</u>
al-Antitrypsin	<u>Click Here</u>
Other proteins	<u>Click Here</u>
Acute phase proteins	Click Here
Hypogammaglobulinemia	<u>Click Here</u>

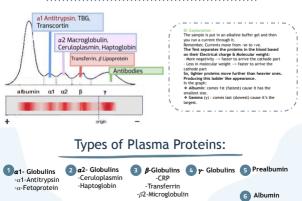
Plasma Proteins Functions

Transport: Albumin, Prealbumin, Globulins

Maintain plasma on oncotic pressure: Albumin

Defense: Immunoglobulin, Complements

Clotting & Fibrinolysis: Thrombin, Plasmin


[1]: HB -> intracellular transporter (inside RBCs) Plasma proteins -> extracellular transporter (in plasma)

Measurement of Plasma Proteins

1- Quantitative measurement of a specific protein:	-Chemical or immunological reactions.
2- Semi Quantitative	-Proteins are separated by their electrical charges
measurement by	in electrophoresis.
electrophoresis: (439:	-Five separate bonds of proteins are observed.

-These bands change in disease.

Normal Pattern of Plasma Protein Electrophoresis:

Types of Plasma Proteins

Prealbumin (Transthyretin):

Information	Function	Lowered levels in
Migrates faster than albumin in electrophoresis. (thus the name PREalbumin) Separated by immunoelectrophoresis. Can't be seen in electrophoresis because it's smaller, faster than albumin and have very little amount except in:CSF, so it need specific measurement -immunoelectrophoresis Short half-life (2 days).	A transport protein for: 1.Thyroid Hormone. (439: why we call it transthyretin) 2.Retinol (vitamin A).	 Liver disease. (439: because they can't produce prealburnin) Nephrotic Syndrome. Acute phase inflammatory response. (439: negative acute phase protein) malnutrition.

Albumin		
Information	Function	
1- most abundant plasma protein (-40 g/L) in normal adult. (439: resembles 65% of plasma protein in our body and 35% rest of proteins)	 Maintains oncotic pressure: The osmotic pressure exerted by plasma proteins that pulls water into the circulatory system. maintains fluid distribution in and outside cells and plasma volume. 	
2- Synthesized in the liver as pre proalbumin and secreted as albumin.	2- 80 % of plasma oncotic pressure is maintained by albumin. (439: main function)	
3- Half-life in the plasma: 20 Days. (439: longer than prealbumin)	3- A non -specific carrier of: Hormones, Calcium, Free fatty acid, drugs, etc.	
4- Decreases rapidly in injury - due to loss of blood-, infection and surgery.	4- Tissue cell can take up albumin by pinocytosis -cellular drinking- where it is hydrolyzed to amino acids.	

5-Useful in treatment of liver diseases, hemorrhage, shock and burns.

Types of Plasma Proteins

Albumin Abnormalities

Hypoalbuminemia

Hyperalbuminemia

Causes:

1- Decrease Albumin synthesis (liver cirrhosis, malnutrition)

2- Increased losses of albumin:

• Increased catabolism in infections or cancer.

 Excessive excretion by the kidneys (Nephrotic syndrome) (439: no filtration of albumin so albumin is excreted)

Excessive loss in bowel (bleeding)

• Severe burns (plasma loss in the absence of skin barrier)

Effects:

1- Edema due to low oncotic pressure: - Albumin levels drops in liver disease causing low oncotic pressure . (439: albumin is the main plasma protein and it's the one mainly responsible of oncotic pressure so when albumin level decrease water will shift to tissue and cause edema.)

- Fluid moves into the interstitial spaces causing edema.

2- Reduced transport of drugs and other substances in plasma.

3- Reduced protein-bound calcium - Total plasma calcium level drops - lonized calcium level may remain normal. (439: because it's not bound to protein)

1- No clinical conditions are known that cause the liver to produce large amounts of albumin

2- The only cause of hyperalbuminemia is dehydration. (439: If there is dehydration -> Intravascular fluid will decrease -> Albumin amount will be high -> Hyperalbuminemia.)

Due to loss of fluids , Albumin concentration% will increase (the increase not in production but in conc.in relation to low amount of fluid)

Types of plasma Proteins

α1-Antitrypsin

Information

1. Synthesized by the liver and macrophages.

2. Over 30 types are known.

3. The most common is **M type** while Z type is the one associated with disease

Function

1- An Acute-phase protein that inhibits proteases (439: Protease enzymes that produced by organisms to destroy tissues (mainly with z type)

2- proteases are produced endogenously and from leukocytes and bacteria. - Digestive enzymes (trypsin, chymotrypsin) - Other proteases (elastase, thrombin)

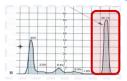
3- Infection leads to protease release from bacteria and from leukocytes.

α1-Antitrypsin Abnormalities

Genetic deficiency (mainly with type 2.)	 Synthesis of the defective α1-Antitrypsin occurs in the liver but it can not secret the Protein. α1-Antitrypsin accumulates in hepatocytes and is deficient in plasma. 	
Laboratory Diagnosis:	1. Lack of d1-globulin band in protein electrophoresis 2. Quantitative measurement of d1-Antitrypsin by: - Radial immunodiffusion - isoelectric focusing - nephelometry	
Clinical Consequences of a1-Antitrypsin Deficiency:	-Neonatal jaundice with evidence of cholestasis. -Childhood liver cirrhosis. -Pulmonary emphysema in young adults elastase will become more active it cause destruction of lungs.	

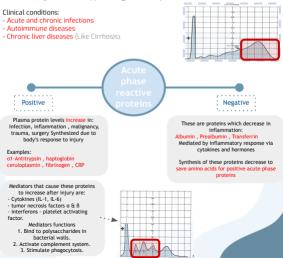
Other plasma proteins

Plasma proteins	About	Pathology
a -Fetoprotein (AFP) a1-globulin	Synthesized in embryo & fetus by parenchymal cells of liver. AFP levels j gradually during intrauterine life and neach adult levels at birth. Function is unknown but it may protect fetus from immunologic attack by the mother & no known physiological function in adult.	† maternal AFP levels: Neural tube defect (spina bifida), anencephaly I maternal AFP levels: † risk of Down's syndrome AFP is a tumor marker for: Hepatoma and testicular cancer.
Ceruloplasmin a2-globulin	Synthesized by the liver & contains >90% of serum copper An oxidoreductase that inactivates ROS causing tissue danage in acute phase response.Important for iron absorption from the intestine	Wilson's disease: Due to low plasma levels of ceruloplasmin, copper is accumulated in the liver and brain.
Haptoglobin a2-globulin	Synthesized by the liver & binds to free hemoglobin to form complexes that are metabolized in the reclucioendothelial system (RES)/to gleen to be recluded). Limits fron loss by preventing Ho loss from kidneys.	Plasma level decreases during hemolysis.
B2-Microglobulin B-globulin	A component of human leukocyte antigen (HLA) & present on the surface of lymphocytes and most nucleated cells. Filtered by the renal glomeruli due to its small size but most (>9%) is reabsorbed.	† serum levels are found in: Overproduction in disease; severe inflammation (infections, SLE, and rheumatoid arthritis) May be a tumor marker for: Leukemia, lymphomas, multiple myeloma.
Transferrin B-globulin	A major iron-transport protein in plasma 30% saturated with iron & iron deficiency results in increased hepatic synthesis. A negative acute phase protein.	Plasma ↓ level in: Malnutrition, liver disease, inflammation, malignancy
C-Reactive Protein(CRP) B-globulin	A Positive acute-phase protein synthesized by the liver & Important for phagocytosis.	plasma levels are found in many inflammatory conditions such as rheumatoid arthritis. A marker for ischemic heart disease. (ret sensitive, B it is measured as high sensitivity (CBP)


Hypergammaglobulinemia

Monoclonal (Paraproteinemia)

Proliferation of a single B-cell clone produces a single type of Ig.


Appears as a separate dense band (paraprotein or M band) in electrophoresis. Paraproteins are characteristic of malignant B-cell proliferation. Clinical condition: multiple myeloma. 3M:

<u>M</u>onoclonal - <u>M</u> band - <u>M</u>ultiple <u>m</u>yeloma #Med438

Polyclonal (B cells)

Stimulation of many clones of B-cells produce a wide range of antibodies. y-globulin band appears large in electrophoresis.

MCQs

Q1 :Which plasma protein maintains	Q4 : When the Ceruloplasmin is
plasma oncotic pressure? ?	Decreased?
A- Albumin	A- Wilson's disease
B- Immunoglobulins	B- Saleh's diseases
C- Haptoglobin	C- HCC
- D- Ceruloplasmin	D- Liver disease
: Ceruloplusinin	···
Q2 : <i>a</i> 1-Antitrypsin proteins inhibit?	Q5 : When the hypergammaglobinemia
QZ : α 1-Antitrypsin proteins inhibit?	
	indicates MM?
A- Prealbumin	A- Polyclonal band
B- Macrophages	B- Monoclonal band
C- Proteases	C- Tetraclonal
D- Lipases	D- Normal increase
t	
Q3 : Reduced protein-bound Calcium is	5
· due to?	decreased?
$\cdot A - \alpha 1$ -Antitrypsin Deficiency	: A- Hemodynamically stable patients
· B- Increased Fibringen	: B- Hemoglobinopathies
C- Hyperalbuminemia	C- Thrombocytopenia
D- Hypoalbuminemia	D- Hemolysis
*	
	Answers:Q1:A Q2:C Q3:D Q4:A Q5:B Q6:D
SAQ	Annersteria lette lette letta letta letta letta
Q: List and briefly describe the 2 meth	lods of plasma proteins.
:	
1. and a	
A: <u>Slide 5</u>	
1	
Q: What are the acute phase proteins a	and their types?
1	
to and the	
A: <u>Slide 10</u>	:
1	:
1	:
1	: /
•	
	: /
3	

Team Leaders

📲 Raghad Alhamid

📲 Remas Aljeaidi

