

Megaloblastic anemia

GNT BLOCK

Editing file:

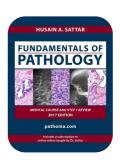
Objectives

To understand the mechanisms by which macrocytic anaemia may arise

To appreciate the signs and symptoms of macrocytic anaemia

To understand how macrocytic anaemia can be classified

To be able to know the causes of macrocytic anaemia



To understand the normal metabolism of vitamin B12 and folic acid, and to appreciate how megaloblastic anaemia may arise

To suggest some normoblastic causes of macrocytosis

Click on <u>PATHOMA</u> for a revision and more info!

ightarrow This lecture was given by: Dr.Osama khojah and prof. Fatma Al Qahtani

*No objectives was found in new male slides

Overview

EXTRA

Definition

In macrocytic anaemia the red cells are abnormally large (MCV >100 fL). There are several causes but they can be broadly subdivided into megaloblastic and non-megaloblastic, based on the appearance of developing erythroblasts in the bone marrow.x

Macrocytosis	term used to describe red blood cells that are larger than normal	
Hypersegmented neutrophils	 Neutrophils with more than 5 (normal is 3 - 5 lobes) The presence of hypersegmented neutrophils is an important diagnostic feature of megaloblastic anemias. 	

Туре	Megaloblastic Macrocytic	Non-Megaloblastic (Normoblastic) Macrocytic	
DNA synthesis	Large RBC's as a result of impaired DNA synthesis Which causes inability of <u>cell</u> <u>replication</u> . RNA and protein synthesis is not affected , so the cell will continue to grow and increase in size.	Large RBC's with no impairment of DNA synthesis . The exact mechanisms creating large red cells in each of these conditions is not clear .	
Etiology	Most commonly as a result of Folate and Vitamin B12 deficiency	Many possible causes like alcoholism, liver disease, and aplastic anemia	
hypersegmented neutrophils	present	absent	
Information	Not only RBC's are affected but also leukocytes, megakaryocytes, and the intestinal epithelium	Table 5,10 Causes of macrocytosis other than megaloblastic anaemia. Alcohol Liver disease Myxoedema Myelodysplastic syndromes Antimetabolite drugs, e.g. hydroxycarbamide Aplastic anaemia Pregnancy Smoking Reticulocytosis Myeloma and paraproteinaemia Neonatal	

Normoblastic macrocytic

Suggested mechanism of how normoblastic macrocytic anemia is caused:

Liver disease

- Chronic liver disease, such as cirrhosis, can lead to impaired synthesis of proteins, including those involved in the production and maintenance of red blood cells.
- The liver plays a role in processing and storing vitamin B12 and folate, essential for normal red blood cell production. Liver dysfunction can disrupt these processes, contributing to macrocytic anemia.

Alcoholism

- Chronic alcohol use can have multiple effects on the hematologic system, including macrocytosis.
- Alcohol can directly suppress the bone marrow, affecting the normal production of red blood cells.
- Additionally, alcohol can lead to nutritional deficiencies, particularly of vitamin B12 and folate, which are essential for proper red blood cell formation.

Aplastic anemia

- Aplastic anemia is characterized by a reduction in the number of blood cells produced in the bone marrow. In some cases, this can lead to macrocytic anemia.
- The bone marrow failure in aplastic anemia affects the normal production of red blood cells, leading to larger and fewer red blood cells (macrocytosis).
- remember aplastic anemia is mainly one of the causes of normocytic-normochromic anemia with some macrocytosis of remaining RBC.

-Values are not important, you just have to know that:

The the first three are different in male than female And the last four are same in both

-WBC values are not important as well

Normal Adult <u>Red Cell</u> Values				
	Male	Female		
Haemoglobin (g/L)	135-175	115-155		
Haematocrit (PCV) (%)	40-52	36-48		
Red cell count (x10 ¹² /L)	4.5-6.5	3.9-5.6		
Mean cell haemoglobin(pg)		-34		
Mean cell volume (FL)	80-95			
Mean cell haemoglobin concentration (g/L)	300-350			
Reticulocyte count (x10 ⁹ /L)	25-125(1.0-2%)			
In children normal haemoglobin values (g/L) are: • Newborn: 150 – 210				

• 3 months: 95 – 125

• 1 year to puberty: 110 – 135

* PCV, Packed cell volume.

Normal <u>WBC</u> Count in Adults			
Characteristic	Value X 10 ⁹ /L		
Total	4.0 - 11.0		
Neutrophils	2.5 - 7.5		
Lymphocytes	1.5 - 3.5		
Monocytes	0.2 - 0.8		
Eosinophiles	0.04 - 0.44		
Basophiles	0.01 - 0.1		
Platelets	150-450		

Children normally have higher lymphocytes count

Classification of Anemia

Chick here for the original diagram from male slides

Chick here for the original diagram from male slides				
	Microcytic Hypochromic Anemia	Normocytic Normochromic Anemia	Macrocytic Anemia Characterized by: increased MCV	
MCV	<80 fL	80-(95-100) fL	Increased MCV: >100 fL	
MCH	< 27 pg	>26 pg	>34 pg	
Etiology	 Iron def. Anemia Thalassemia Anemia of chronic disease(some cases) Lead poisoning Sideroblastic anemia (some cases) 	 Many haemolytic anaemias Anemia of chronic disease (some cases) After acute blood loss Renal disease(insufficiency) Mixed deficiencies Bone marrow failure, e.g. post-chemotherapy, infiltration by carcinoma, etc. Chronic disease inflammation malignancy sickle cell disease 	If serum B12 and folate normal: 1. alcoholism 2. bone marrow disorders 3. hypothyroidism 4. liver disease 5. medication (chemotherapy, antivirals) If 1-serum B12 and folate is low 2- elevated homocysteine : A-with Elevated methylmalonic acid : Vit B12 deficiency B-with normal methylmalonic acid: Folate deficiency Important points Will be discussed in next slide	
Male Slides	1	Microcytic Anemia		
Test blood	 Serum iron decreased Serum ferritin decreased 	 Serum iron normal or elevated Serum ferritin normal or elevated 	 Serum iron normal or decreased Serum ferritin normal or elevated 	

- elevated TIBC normal or 3. Hgb Electrophoresis: decreased 4.
 - Hgb electrophoresis normal

chronic disease

thalassemias

A-normal in α

B-abnormal in β

TIBC normal

3.

4.

iron deficiency anemia

TIBC elevated

2.

3.

levels:

Etiology

Macrocytic anemia

Macrocytic anemias can be divided into those showing:

Pictures are not important

Megaloblastic erythropoiesis

Describes abnormal red cell development characterized by a

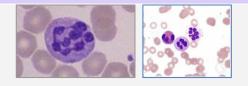
It arises as a consequence of disordered DNA synthesis and

lack of synchrony between the maturation of the red cell

nucleus and its cytoplasm.

results in a macrocytic anemia.

- <u>Normo</u>blastic erythropoiesis
- Describes the normal appearance of red cell maturation, but may still be associated with macrocytosis in the peripheral blood.


Conditions in which **Macrocytosis or hypersegmented neutrophils** may occur in the <u>absence</u> of megaloblastic anemia

Macrocytosis	Macrocytosis with Normoblastic
Female dr: focus on the bold and the rest is for reading	Female dr: focus on the bold and the rest is for reading
 Alcohol Liver disease (especially alcoholic) Reticulocytosis (hemolysis or haemorrhage) Aplastic anaemia or red cell aplasia* Hypothyroidism Myelodysplasia including acquired Sideroblastic anaemia Myeloma and macroglobulinaemia Leukoerythroblastic anemia Myeloproliferative disease Chronic respiratory failure Pregnancy Newborn 	 Normal neonates (Physiological) Chronic alcoholism Myelodysplastic syndromes Chronic liver disease Hypothyroidism Normal pregnancy Therapy with anticonvulsant drugs Haemolytic anaemia Chronic lung disease (with hypoxia) Hypoplastic and aplastic anaemia Myeloma

Hypersegmented neutrophils

- Congenital (familial) abnormality
- Iron deficiency
- Renal failure

Note:- High MCV recorded when cold agglutinins or paraproteins are present.

Causes of Megaloblastic Anemia

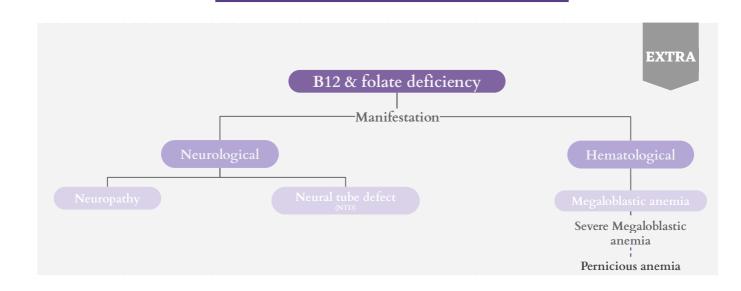
The Cause	Details		
B12 related Female dr: important	Cobalamin (B12) deficiency or abnormalities of cobalamin metabolism		
Folate related Female dr: important	Folate deficiency or abnormalities of folate metabolism		
Therapy with antifolate drugs Female dr: for reading	e.g. methotrexate		
Independent of either cobalamin or folate deficiency and refractory to cobalamin and folate therapy. Female dr: for reading	 a. Some cases of acute myeloid leukaemia, myelodysplasia. b. Orotic aciduria (responds to uridine) c. Therapy with drugs interfering with synthesis of DNA (e.g. cytosine arabinoside, hydroxyurea, 6-mercaptopurine, azidothymidine (AZT). d. Thiamine responsive 		
Suggested but poorly documented causes of megaloblastic anaemia not due to cobalamin or folate deficiency or metabolic abnormality: (Rare) Female dr: for reading	a. Vitamin E deficiency b. Lesch-Nyhan syndrome (?responds to adenine)		
Other causes of megaloblasts Female dr: for reading	 a. Abnormalities of nucleic acid synthesis b. Orotic aciduria c. Drug therapy : 1-Antipurines (mercaptopurine,azathioprine), 2-Antipyrimidines (fluorouracil, zidovudine (AZT)), 3-Others (hydroxyurea) d. Myelodysplastic syndromes, erythroleukaemia e. Some congenital dyserythropoietic anaemias f. Uncertain aetiology 		

Vitamin B12 & folate

	Vitamin B12	Folate
Dietary source	Only food of animal origin, especially liver	Most foods, especially liver, green vegetable and yeast; destroyed by cooking
Average daily intake In adults Team442: dr's notes: you won't be asked the exact numbers so just understand the concept	7 - 30 µg	200-250 µg
Minimum daily requirement In adults Team442: dr's notes: you won't be asked the exact numbers so just understand the concept	1-3 µg	100-200 μg Higher during pregnancy and lactation
Body stores In adults	3-5 mg, mainly in the liver	8-20 mg, mainly in the liver
Time to develop deficiency in the absence of intake or absorption In adults	Anemia in 2-10 years (It takes time) (years)	Macrocytosis in 5 months (Months)
Requirements for absorption	Intrinsic factor secreted by gastric parietal cells Team442: due to large hepatic stores of Vit B12	Conversion of polyglutamates to monoglutamate by <u>intestinal</u> <u>folate conjugase</u> (this enzyme should be normal for the ability to absorb) Team442: because body stores are minimal
Site of absorption	Terminal ileum	Duodenum and jejunum
Structure (Not important)		$\begin{array}{c} H_{2} N \underbrace{+ \begin{array}{c} & & \\ $
Forms	 Methylcobalamin: mostly found in blood circulation Adenosylcobalamin: main form in tissue Hydroxocobalamin: supplement, main form of treatment cyanocobalamin: supplement 	<text></text>

Causes Vitamin B12 & folate deficiency

Folate deficiency Female's dr: focus on redMalabsorptionMalabsorptionCoeliac disease Jejunal resection Tropical sprueIncreased requirement: (People who need more folate)Pregnancy Premature infants Chronic haemolytic anaemias
Coeliac disease Jejunal resection Tropical sprue Increased requirement: (People who need more folate) Pregnancy Premature infants Chronic haemolytic anaemias
Jejunal resection Tropical sprue Increased requirement: (People who need more folate) Pregnancy Premature infants Chronic haemolytic anaemias
(People who need more folate) Pregnancy Premature infants Chronic haemolytic anaemias
Premature infants Chronic haemolytic anaemias
Myelofibrosis Various malignant diseases
Increased loss
Long-term dialysis congestive heart failure acute liver disease
Nutritional
Inadequate dietary intake
Complex mechanisms
Anticonvulsant therapy ethanol abuse (only some cases with macrocytosis are folate deficient)


Certain anticonvulsant medications, specifically some older generation drugs, have been associated with causing folate deficiency by the following mechanisms:

1. Impaired Absorption: Some anticonvulsants, such as phenytoin and phenobarbital, can interfere with the absorption of folate in the gastrointestinal tract. This may result in reduced levels of folate available for the body to use.

2. Increased Metabolism: Anticonvulsants can induce hepatic enzymes, which may accelerate the breakdown of folate in the liver. This increased metabolism can lead to a decrease in the circulating levels of folate.

3. Altered Folate Metabolism: Anticonvulsants may affect the metabolism of folate within cells. For example, they can interfere with the conversion of folate to its active forms that are essential for various cellular processes.

B12 & folate deficiency

Neuropathy due to Vit B₁₂ and folate deficiency

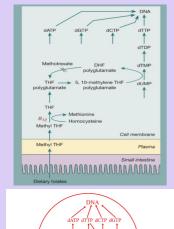
<u>Neuropathy</u> is mostly due vit B12 deficiency, causes:

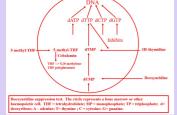
- Progressive neuropathy, affecting:
- The peripheral sensory nerves.
 Posterior and lateral columns of the spinal cord (subacute combined degeneration of the cord).
- Optic atrophy.
- Psychiatric symptoms
- Cause:
 - The neuropathy is likely due to accumulation of S-adenosyl <u>homocysteine*</u> and reduced level of S-adenosyl methionine in nervous tissue resulting in defective methylation of myelin and other substrates.

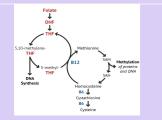
Also caused by *↑* Methylmalonic acid, How?

- Vitamin B12 a cofactor for the conversion of methylmalonic acid to succinyl CoA (important in fatty resulting in defective acid metabolism).
- Vitamin B12 deficiency results in increased levels of methylmalonic acid, which impairs spinal cord myelinization.
- Damage results in a condition known as **subacute combined degeneration of spinal cord**

Neural tube defect (NTD)


Female's dr: you just have to know that folate and vitamin B12 deficiency leads to spina bifida, the rest is for reading only


- Folate or Vit B12 deficiency in the mother predisposes the fetus to neural tube defect (anencephaly, spina bifida or encephalocoele).
- This result in build-up of homocysteine and S-adenosyl homocysteine in the fetus which impair methylation of various proteins and lipids.
- Polymorphism in the enzyme 5,10 methylene tetrahydrofolate reductase (5,10-MTHFR). This mutation (677 C→T) in the MTHFR gene results in low serum and red cell folate and high serum homocysteine in the parents and fetus with NTD.



• Cleft palate in children and hair lip

Absorption and metabolism of Folic acid

• **Dietary folate** is converted to **methyl tetrahydrofolate** form which circulates in plasma.

Explanation is

- After entering cells vitamin B12 is needed to convert:
 - Methyl THF to **THF** (the **active form** of folate)
 - **Homocysteine** to **methionine** (by transferring a methyl group).
- THF becomes **THF polyglutamate**, then becomes **5,10methylene THF polyglutamate** which is essential for the formation of DNA building blocks (dTMP: dThymine-Monophospate).
- Once it forms DNA precursor, 5,10- methylene THF polyglutamate becomes DHF polyglutamate
 - which can be reconverted to THF polyglutamate again though the enzyme: **dihydrofolate reductase** (**inhibited by methotrexate** which is useful in the treatment of malignant diseases)

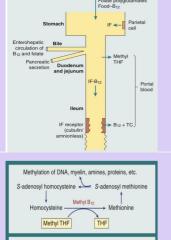
Summary:

Dietary folate → methyl tetrahydrofolate "circulates in plasma" → THF "in cell by help of B12" → THF polyglutamate → 5,10- methylene THF polyglutamate " essential for DNA synthesis" → DHF polyglutamate

B12 from the food is combined with the intrinsic factor (IF) which is secreted from

Conversion of methyl THF to the active form THF (By taking the methyl group),

Vitamin B12 is absorbed into portal blood where it becomes attached to the


plasma-binding protein transcobalamin (TC, also called transcobalamin II)³

Absorption and metabolism of B12

IF-B12 complex reaches terminal ileum ¹⁺²,

Vitamin B12 is a coenzyme for these biochemical reactions:

the stomach by the parietal cells.

opionyl CoA —→ Methylmalonyl CoA —→ Succinyl CoA

1.

2.

group).
3. Conversion of methylmalonyl coA to succinyl coA (By acting as a <u>coenzyme</u> (in the form Adenosylcobalamin, which is the main form in tissues)

Conversion of Homocysteine (harmful) to methionine (By giving the methyl

forming the main form of circulating B12 which is (methylcobalamin)

EXTRA Vitamin B12 This summary was done by Rafan Alhazzar				
Reaction	Substrate	Form of B12	Enzyme	Final product
Conversation of propionyl-CoA to succinyl-CoA	propionyl-CoA	Deoxy-adenosyl- <u>cobalamine</u>	Methylmalonyl CoA Mutase	Succinyl-CoA
Conversion of homocysteine to methionine	homocysteine	Methyl <u>cobalamin</u>	Methionine Synthase	Methionine, N5-methyl-TH4 → TH4

Pernicious anemia

🔶 Pernicious Anemia (PA)			
Definition	Severe megaloblastic anemia		
Etiology	 Due <u>Autoimmune</u> attack of the gastric mucosa leading to atrophy. Helicobacter pylori infection may be the cause which present in: Younger age as iron deficiency anaemia Elderly as pernicious anaemia 		
	Genetic	Tends to be in families	
Epidemiology	Age & Gender	More common in <u>elderly female</u> patients than males (1.6:1) at the age of 60 and above (rare in children)	
	Location	More common in Northern Europeans (Denmark, Sweden, Norway etc)	
Pathophysiology			
Findings	2. Raised seru	um vitamin B12 level or almost absent level (main finding) um gastrin levels* neuropathy is common feature	

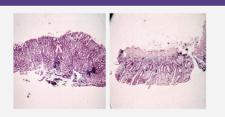
*How is the gastrin levels is elevated in pernicious anemia?

The autoimmune response in pernicious anemia often targets the gastric parietal cells, leading to their destruction. As a result: 1.Intrinsic Factor Decrease: With the loss of parietal cells, there is a reduction in the production of intrinsic factor, a protein required for the absorption of vitamin B12 in the small intestine.

3.Feedback Loop with Gastrin: Gastrin is a hormone that stimulates the secretion of gastric acid. In response to the decreased gastric acid production due to the loss of parietal cells, there is a feedback mechanism that increases the secretion of gastrin. 4.Elevated Gastrin Levels: The increased gastrin levels aim to stimulate the remaining parietal cells, promoting the production of gastric acid. However, since the primary defect is the destruction of parietal cells, this feedback loop results in persistently elevated gastrin levels.

The elevated gastrin levels can be observed in blood tests and may contribute to other symptoms or conditions, such as an increased risk of gastric carcinoid tumors or gastric cancer.

Monitoring and managing gastrin levels are important aspects of the overall care for individuals with pernicious anemia


^{2.}Decreased B12 Absorption: The diminished intrinsic factor results in impaired absorption of vitamin B12, leading to the characteristic B12 deficiency seen in pernicious anemia.

Megaloblastic Anaemia

Hematological findings

Tissue	Findings	Microscope
Peripheral blood	 Macrocytic anaemia, oval macrocytes, anisocytosis, poikilocytosis, high MCV. Dimorphic anemia when it is associated with iron deficiency or with thalassaemia trait. Hypersegmented neutrophils Leukopenia and thrombocytopenia 	
Bone marrow	 Hypercellular marrow with M:E ratio in normal or reduced Accumulation of primitive cells due to selective death of more mature cells. Megaloblast (large erythroblast which has a nucleus of open, fine,lacy chromatin). Dissociation between the nuclear and cytoplasmic development in the erythroblasts. Mitosis and dying cells are more frequent than normal (due to ineffective hematopoiesis) Giant and abnormally shaped, metamyelocytes, polypoid megakaryocytes. Increased stainable iron in the macrophage and in the erythroblasts. 	
Other laboratory abnormalities	 Chromosomal abnormalities Ineffective hematopoiesis (intramedullary cell death by apoptosis) associated with increased serum indirect bilirubin. 1. turobillinogen and faecal stercobillinogen 2. tLDH, tserum iron, tblood carbon monoxide (tLDH,= lactate dehydrogenase is an abundant enzyme is in red blood cells and functions as a marker for hemolysis (or turn-over of cells)) 1. tserum lysozyme 2. ↓ haptoglobins (large amounts bind to free hemoglobin causing reduced serum level (marker of hemolysis)) 3. Positive schumm's test 4. Positive urine hemosiderin 	

Histopathological findings

Left: Normal Gastric mucosa Right: Gastric atrophy in patients with pernicious Anemia

Heavy infiltration of lamina propria with plasma cells and lymphocytes in patients with pernicious Anemia



Left: Normal small intestinal mucosa Right: Histopathology of small intestinal mucosa in malabsorption syndrome

Megaloblastic Anaemia

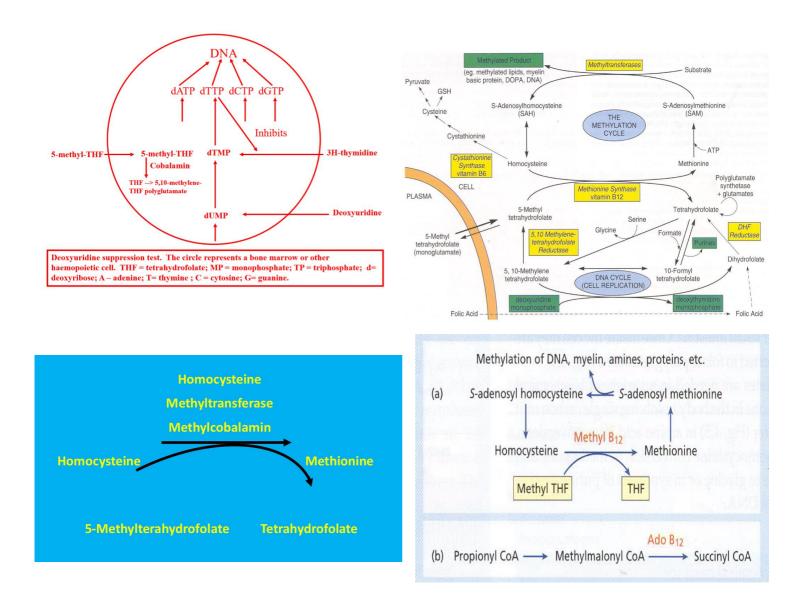
Clinical Features Progressive symptoms and signs of anaemia

- Weakness, anorexia, weight loss, diarrhoea or constipation, tiredness, shortness of breath, angina of effort, heart failure
- Mild jaundice, glossitis, stomatitis, angular cheilitis.
- Purpura, melanin pigmentations.
- Infections

angular cheilitis (Fissures)

Pallor

Glossitis (Tongue swelling)


🔶 Treatment 🔶			
In case of	Vitamin B12 deficiency	Folate deficiency	
Compound	Hydroxocobalamin	Folic acid	
Route	Intramuscular	Oral	
Dose	1000µg	5 mg	
Initial dose	6X1000 μg over 2-3 weeks	Daily for 4 months	
Maintenance	1000µg every 3 months	Depends on underlying disease; life-long therapy may be needed in chronic inherited hemolytic anemia, renal dialysis, myelofibrosis	
Prophylactic	- Total gastrectomy - Ileal resection	- Pregnancy - severe hemolytic anemias - dialysis - prematurity	

EXTRA

cs are froi the slides

Dr. Fatma didn't mention or explain these pics, so we are adding them here if you want to take a look ;)

Summary Thanks to hematology team 439

- Megaloblastic erythropoiesis describes abnormal red cell development characterized by a lack of synchrony between the maturation of the red cell nucleus and its cytoplasm. It arises as a consequence of disordered DNA synthesis and results in a macrocytic megaloblastic anemia.
- It can be caused by vitamin B12 or folate deficiency or antifolate drugs (ex. methotrexate)
- Clinical features include: jaundice, glottitis, angular cheilosis, purpura

	Vitamin B12 Deficiency	Folate Deficiency
Found in	Only food of animal origin	green vegetable and yeast
Time to develop deficiency in the absence of intake or absorption 🛠	Anemia in 2-10 years	Macrocytosis in 5 months.
Absorption	Requires intrinsic factor secreted by gastric parietal cells, Cubilin, transcobalamin II	Conversion of polyglutamates to monoglutamates by intestinal folate conjugase
Site of absorption	Terminal ileum	Duodenum and jejunum
Cause of deficiency	 (Malabsorption) Total or partial gastrectomy Inadequate secretion of intrinsic factor Pernicious anaemia (Nutritional) Veganism (Others) Alcohol abuse 	 Pregnancy Infants Inadequate dietary intake Malabsorption Increased requirement
Manifestation of deficiency	Neuropathy can manifest due to vit B12 or folate deficiency. Cause of the neuropathy as a result of B12 deficiency is likely to be related to Accumulation of S-adenosyl homocysteine and reduced levels of S-adenosyl methionine in nervous tissue.	
Hematological findings in peripheral blood	 Macrocytic anemia, oval macrocytes, anisocytosis,Poikilocytosis Hypersegmented neutrophils, leukopenia, and thrombocytopenia 	
Hematological findings in bone marrow	 Giant and abnormally shaped, metamyelocytes, polyploid megakaryocytes Megaloblast (large erythroblast which has a nucleus of open, fine, lacy chromatin). Increased stainable iron in the macrophage and in the erythroblasts. Hypercellular marrow with M:E ratio in normal or reduced. Accumulation of primitive cells due to selective death of more mature cells. 	
Treatment	Hydroxocobalamin, IM	Folic acid, oral
Pernicious Anemia	 It's a problem in <u>secretion</u> of intrinsic factor Severe megaloblastic anaemia due to autoimmune attack on the gastric mucosa leading to atrophy and absence of intrinsic factor (IF) secretion Absent serum vitamin B12 	

• Raised serum Gastrin

Members board

Team Leaders:

Aleen AlKulyah Remaz Almahmoud Sultan albaqami

Team Members:

• Milaf alotaibi

- **Reuf Alahmari**
- Deema almadi
- huda bin jadaan
- Elaf moatabi
- Aseel Alsaif
- Razan alsoteehi
- Maryam Alghannam
- Raghad Alqhatani
- Lama Alotaibi
- AlJoharah Alwohaibi
- Aroub Almahmoud
- Dana Almuhaisen

- Ryan alghizzi
- 🥖 Feras Mazen
 - Mishal Aldakhail
 - Abdullah Alzamil
 - Khalid Alanezi
 - Mohammed Manee
 - Ziad Alhabardi
 - Zeyad Alotaibi
 - Omar Alamri
 - Moath Alhudaif
 - Faris Alzahrani
 - Abdullah Alkodari

Special thanks to 442 team

Hemato.team43@gmail.com