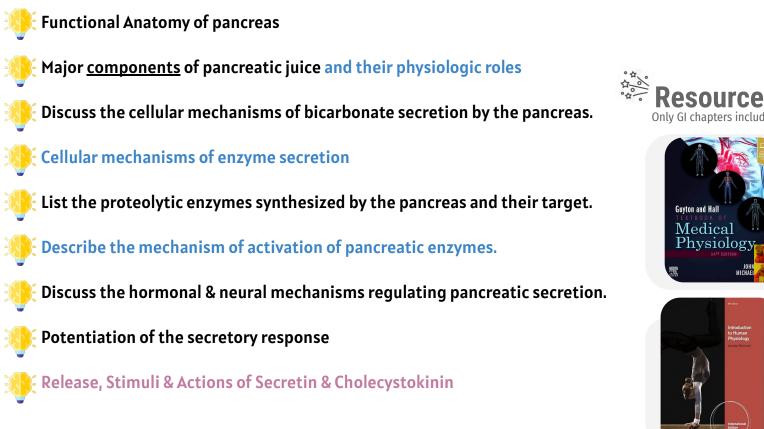


Physiology of Pancreas


GNT Physiology

This lecture was presented by: Prof. Mohammed Alzoghaibi & Dr. Hayam Gad

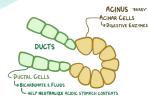
- **Color Index:**
- Main text
- Important
- Female Slides
- Male Slides
- NotesExtra

Editing file

Objectives

- <u>Click here</u> for a helpful channel by the team!
- Summary of this Lecture will be in the channel soon..

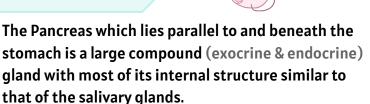
For exocrine pancreas.


For endocrine pancreas.

دِ وَسَارِعُوا إِلَىٰ مَغْفِرَةٍ مِّن رَّبِّكُمْ وَجَنَّةٍ عَرْضُهَا السَّمَاوَاتُ وَالْأَرْضُ عِدَّتْ لِلْمُتَقِينَ (133)

وبادروا وسابقوا إلى فعل الخيرات، والتقرب إلى الله بأنواع الطاعات؛ لتنالوا مغفرة من الله عظيمة، وتدخلوا جنة عرضها السماوات والأرض، هَيَّاها الله للمتقين من عباده. -التفسير البيئر

Functional anatomy


•

Characteristics

- Pancreatic juice is secreted in response to the presence of <u>chyme</u> in the upper portions of the small intestine (duodenum)
- The pancreatic digestive enzymes are secreted by the acini.
- Large volumes of sodium bicarbonate solution are secreted by the small ductules & larger ducts leading from the acini (from duct cells)
- Volume: 1.2-1.5 L/Day / 1 L/Day
- Isotonic → The osmolarity of pancreatic fluid = plasma
- PH: 8 alkaline. Because of bicarbonate solution.

Anatomy

- The combined product of enzymes & NaCO₃ flows through a long pancreatic duct.
- Pancreatic duct joins the common bile duct immediately before it empties into the duodenum through the papilla of Vater, surrounded by the sphincter of Oddi.

Possible SAQ

Function

NTRALOBULAR DUCT

- Pepsin in the duodenum might lead to duodenal ulcer, so we need to neutralize the acidity in the first <u>3cm</u> of the duodenum.
- I. <u>Neutralize</u> the acids in the duodenal chyme to optimum range (pH= 7.0-8.0) for activity of pancreatic enzymes.
- 2. To prevent damage to duodenal mucosa by acid & pepsin.
- 3. <u>Produce</u> enzymes for the digestion of carbs, fat & protein.

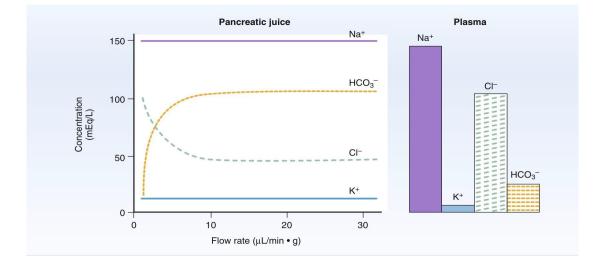
Pancreas divisions

Exocrine	Endocrine
 Constitute 99% of pancreas. Made of Acinar gland tissue The cells lining the acini are serous cells containing zymogen granules → the precursors of pancreatic enzymes (the main source of digestive enzymes). 	 Constitute 1% of pancreas Made of Islets of Langerhans. Secretes: hormones directly into the blood. Secretes 3 hormones: Insulin from Beta cells (~60% of Islets cells) Glucagon from Alpha cells (~25%) Somatostatin from Delta cells (~10%) 1&2 are crucial for normal regulation of glucose, lipid, and protein metabolism.

Composition & Mechanism

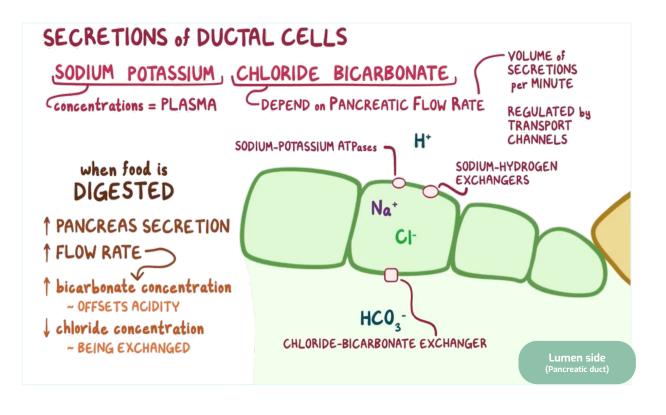
Composition	of secretions Female slides		
<u>Organic</u> materials (1 - 2 %)	<u>Inorganic</u> materials (1%)		
 Mostly enzymes. Secreted from: acinar cells. 	 Electrolytes. Produced from: the centroacinar & intercalated duct cells. Include: Na⁺, K⁺, Ca⁺⁺, HCO₃⁻, Cl⁻, with greater bulk in the form of NaHCO₃ 		
Mechanism of HCO ₃ ⁻ formation	Click here to see the slides' pictures		
	Basolateral membrane Luminal		
CO_2 and H_2O combine in <u>ductal</u> cells to form H_2CO_3 in the presence of carbonic anhydrase. H_2CO_3 dissociates into H ⁺ and HCO ₃ ⁻	Blood Interstitial Fancreatic duct cell Lume Na^+ Na^+ $Cl^ Cl^-$ $HCO_3^ HCO_3^ Cl^ Cl^ Cl^ Cl^-$ H_2O $Cl^ Cl^ Cl^-$		
H ⁺ is <u>transported</u> into <u>blood</u> by Na ⁺ /H ⁺ exchanger at basolateral membrane of ductal cells. Na ⁺ /H ⁺ exchanger to work, it needs Na ⁺ into the cell, this happens by Na ⁺ /K ⁺ ATPase.	Na+ Na+ - 、		
HCO ₃ ⁻ is <u>secreted</u> into <u>pancreatic juice</u> by Cl ⁻ /HCO ₃ ⁻ exchanger at apical membrane of ductal cells. Cl ⁻ pumped into the cell HCO ₃ ⁻ secreted into the lumen.	K+ K+ Na ⁺ , H ₂ O Na ⁺ , H		

"هو هنا Acidic tide بعدها بیمر مع venous blood from stomach ویصیر Neutralization و لذلك PH لا General circulation مایتاثر."


بيدخل Co2 داخل الخلية، في وجود CA بيحطه مع المويه اللي موجودة وبيتكون H2Co3، هذا علطول بيتفكك إلى هيدروجينه وHCO3 حلو؟ الهيدروجينه انسوها شوي، بتلاحظون فوق فيه transporter فبيدخل عندنا HCO3 إضافية، ليه؟ ما ادري قررت تدخل.. مين دخلها؟ الـ Na لذلك تعبّر secodary Active transport.

الآن الـHCO3 بتطلع للـ luminal border بس نحتاج ندخل Cl عشان تقدر تطلع، طيب تخيلوا ان كل الكلورايد دخل جوا، يعني خلص الـCl هل بنقدر نطلع HCO3؛ لا، عشان كذا Cl يصير له recycling.

الهيدروجينه اللي قلت انسوها وين بتروح؟ ممهم جداً نعرف انها بتروح لجهة Basolateral border للدم وليس lumen وهذا منطقي لأن احنا نبغى Alkaline solution احنا بالبنكرياس مو بالـstomach, حلو؟ وهذا سبب Acidic tide بكل بساطة (ممكن بعضكم يسأل ليه مايصير مثلا Metabolic Acidosis، السبب هو النوت اللي فوق حقّت الدكتور).


وطبعاً عشان نطلع الهيدروجينه هاذي بندخل صوديوم (ونفس فكرة الكلور ايد بالضبط، بنحتاج نسوي recycling للصوديوم) بالنسبة للموية بتدخل بالـOsmosis وهذا سبب ان مافيه فرق مع البلازما، Completely isosmotic bicarbonate solution

Effect of flow Rate on pancreatic secretion

The increase in the pancreatic secretion rate (Secretion velocity):

- I. \uparrow HCO₃
- 2. ↓Cl⁻
- 3. Na⁺ & K⁺ remain the same in plasma & pancreatic juice

Everything in this pic was mention by the Dr.

pancreatic secretions

Phases of pancreatic secretions

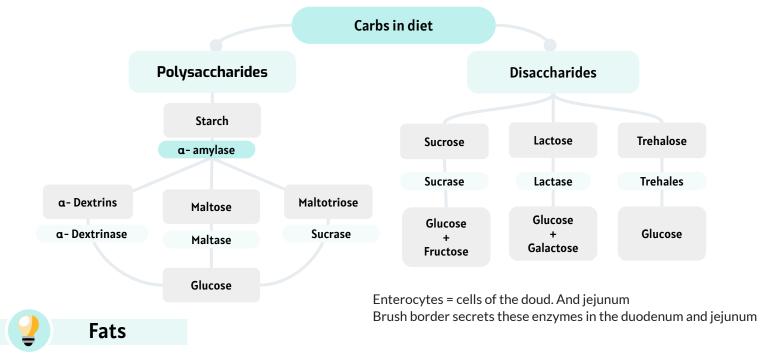
Phase	Cephalic Phase 20% of pancreatic secretion Will be affected in case of vagotomy	Gastric Phase 5-10% of pancreatic secretion Will be affected in case of vagotomy	Intestinal Phase 70-75% of pancreatic secretion
Stimulus	 <u>Smell, Hearing</u>* Swallowing Taste Chewining 	 Gastric distention Presence of proteins 	 Fatty acids Acidity of the chyme (H⁺)
Mediator	Ach by the vagal nerve	 Vago-vagal reflex Ach by the vagal nerve 	 Secretin CCK Vago-vagal reflex

* Due to presence of food in the mouth or even in abcense of food in the mouth, eg, Hearing sounds of food preparation! And this is called <u>conditional</u> reflex. What's the conditional Reflex?

كنت بشرحها بس مافي أحسن من دكتور ناجي : الدقيقة: 45:50

Secretions

 Pancreatic secretions contain many enzymes for digesting proteins, carbohydrates, fats & large quantities of HCO₃ ions.

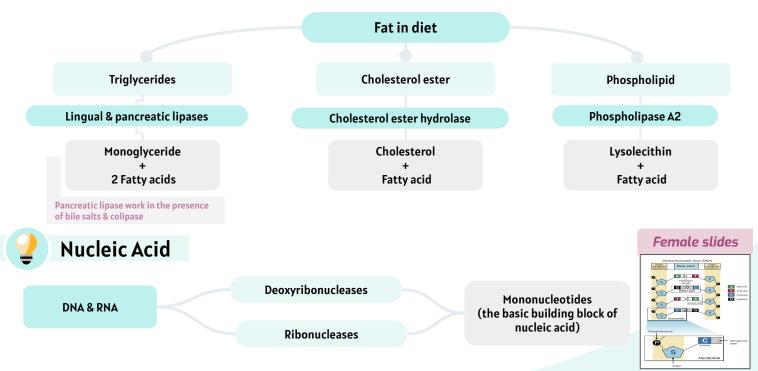

"Please don't skip"

The Role of Pancreas in Digestion

2

Carbohydrates

• The pancreatic enzyme for digesting **carbohydrates** is <u>pancreatic amylase</u>, which hydrolyzes starches, glycogen and most other carbohydrates (except cellulose) to form mostly disaccharides (maltose) and a few tri-saccharides.



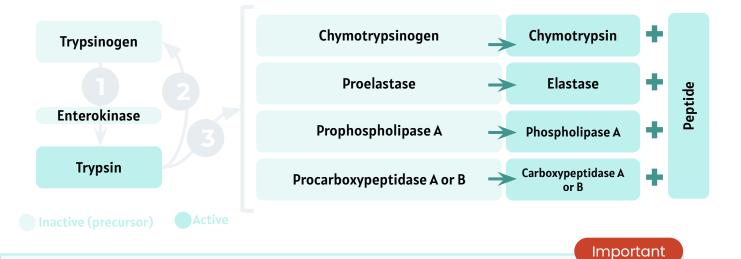
• The main enzymes for **fat** digestion are:

Pancreatic lipase, Cholesterol esterase & Phospholipase.

-Pancreatic lipase: is the most important fat splitting enzyme. It breaks TG into MG and 2 FAs in the presence of bile salts and colipase.

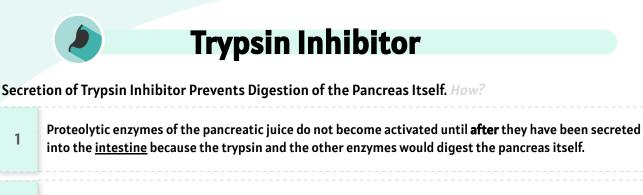
- -Cholesterol esterase: which liberates cholesterol and FA.
- -Phospholipase A2 :which splits phospholipids into lysolecithin & FA.

The Role of Pancreas in Digestion Cont.

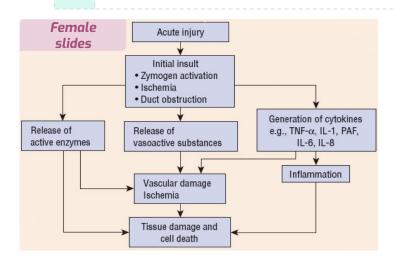

Protein

The suffix -ogen or prefix pro- indicates the enzyme is secreted in an inactive form

Important


 The most important pancreatic enzymes for digesting proteins are: <u>Trypsin</u>, <u>Chymotrypsin</u> and <u>Carboxypolypeptidase</u>.

	Trypsin	Chymotrypsin	Carboxypolypeptidase
Synthesis	 When first synthesized in the pancreatic cells, the proteolytic digestive enzymes are in the <u>inactive forms</u>: Trypsinogen, Chymotrypsinogen and Procarboxypolypeptidas. They become activated only after the are secreted into the intestinal tract. 		
Activation	 Trypsinogen is activated by Enteropeptidase (enterokinase), an enzyme secreted by the intestinal mucosa when chyme comes in contact with the mucosa. Trypsinogen can be activated autocatalytically by trypsin formed from previously secreted trypsinogen. The most important pancreatic enzyme to be activated. 		inogen and Procarboxypeptidase are trypsin to form chymotrypsin and peptidase.
Function	 Trypsin & Chymotrypsin (Endopeptida and partially digested proteins into p sizes. Do <u>not</u> cause release (break down) of <u>acids.</u> 	eptides of various	 Carboxypeptidase (Exopeptidases) → Splits some peptides into individual amino acids at the carboxyl terminus → completing the digestion of some proteins to amino acids



I- Enterokinase is an enzyme that is secreted by brush border of small intestine and activate trypsinogen.

- 2- Trypsin <u>autocatalytically</u> activates itself to active other trypsinogen, and other enzyme.
 - **If it gets inhibited (trypsin) all of these enzymes will stop working (inactive)

- The same cells that secrete proteolytic enzymes into the acini of the pancreas secrete another 2 substance called <u>trypsin</u> inhibitor, which is formed in the <u>cytoplasm</u> of the glandular cells
- It prevents activation of trypsin both inside the secretory cells and in the acini and ducts of the 3 pancreas.
- Because trypsin activates the other pancreatic proteolytic enzymes, therefore trypsin inhibitor 4 prevents activation of the other enzymes as well.
- When a duct is blocked, trypsin inhibitor can not inhibit activation of accumulated enzymes which 5 will be activated and digest the pancreas in few hours.

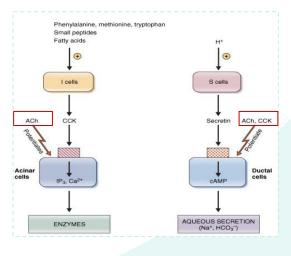
Clinical application: acute pancreatitis Accumulation of the enzymes in the pancreas due to obstruction or other cause (e.g. zollinger-ellison), will lead autoactivation of pancreatic enzymes inside the pancreas, leading to acute pancreatitis

Multiplicative / Potentiation Effect

Important

When all different stimuli of pancreatic secretion (acetylcholine, cholecystokinin, and secretin) occur at once, then the total secretion is far greater than the sum of the secretions caused by each stimulus separately.

The stimuli are said to "multiply" or "potentiate" one another.


Usually, pancreatic secretions are the result of multiple stimuli rather than one stimulus.

Example:

Ach alone: 2 •

1

- CCK alone: 3
- Secretin alone: 2 •
- Total secretion is Not the sum (7)! These • stimuli are said to multiply/potentate eq(12)

(numbers are random, just to get the idea)

I. Vagus nerve

-Act on acinar cells.

Information

Function

-Functions:

Acetylcholine from parasympathetic vagus nerve endings and from other cholinergic nerves in the enteric nervous system →

I) increase in enzyme secretion-fluid & HCO⁻3.

2) Vagus nerve stimulation relaxes (opens) the sphincter of Oddi → release pancreatic enzymes.

2. Cholecystokinin (CCK)

-Act on activating acinar cells -Secreted by: I cells in the duodenal (enteroendocrine cells) & jejunal mucosa. -Stimulated by: food entering the small intestine containing:

I)Fat (long-chain fatty acids).
 2)Proteoses & peptides (Partial protein degradation products).
 -Function: ↑Pancreatic digestive enzymes

CCK: relaxes sphincter of Oddi. Most powerful hormone acting on sphincters.

3. Secretin

-Act on activating ductal cells

-Secreted by: S cells in duodenal & upper jejunal mucosa (present as presecretin).

Stimulated by: increased chyme acidity in the duodenum and jejunum luminal pH < 4.5 **-Function:** stimulate secretion of large quantities of H_2O and NaHCO₃ solution from ductal cells \rightarrow neutralize chyme acidity.

The secreted HCO_3 concentration = 145 mmol/L ~5X normal but a low concentration of Cl⁻.

 $\begin{aligned} \text{HCl} + \text{NaHCO}_3 &\rightarrow \text{NaCl} + \text{H}_2\text{CO}_3 \\ \text{H}_2\text{CO}_3 &\rightarrow \text{CO}_2 + \text{H}_2\text{O} \end{aligned}$

 Ach & CCK stimulate the acinar cells of the pancreas, causing production of large quantities of pancreatic digestive enzymes but relatively small quantities of H₂O & electrolytes to go with the enzymes.

 Secretin (in contrast) stimulates secretion of large quantities of H₂O and NaHCO₃ solution by the pancreatic ductal epithelium.

Trypsin inhibitors (TI) get degraded in the duodenum to let the trypsin function.

-Secretin:

When acid chyme with PH less than 4.5-5 enters the duodenum from the stomach, it causes duodenal mucosal **release and activation of secretin**, which is then absorbed into the blood.

After secretin secretion, it is then absorbed into the blood. Cholecystokinin, like secretin, passes by way of the blood to the pancreas

Important

This effect is similar to that caused by vagal stimulation but even more pronounced, accounting for 70-80% of the total secretion of the pancreatic digestive enzymes after a meal.

Cholecystokinin (CCK)

- Augments stimulation of HCO₃⁻ & H₂O secretion by secretin.
- Stimulates pancreatic enzyme secretion.
- Stimulates intestinal motility & relaxes ileocecal sphincter.
- Inhibits stomach contraction moderately & slows its emptying.
- Contracts gallbladder, relaxes sphincter of Oddi and causes bile discharge into intestine.
- Has trophic effect on pancreas.
- Maybe concerned with the mechanism of satiety.

 Augments stimulation of enzyme secretion by CCK.

 Stimulates pancreatic secretion rich in HCO₃⁻ & H₂O from duct cells.

Secretin

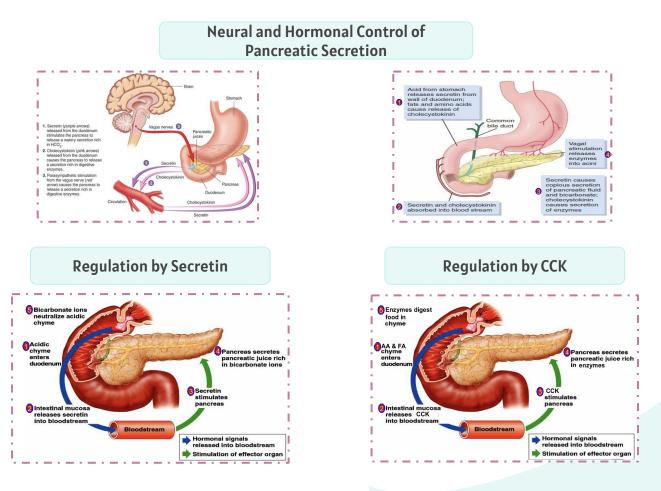
Secretin is present in an inactive form:prosecretin

- Stimulates hepatic bile flow & HCO₃⁻ secretion
- Inhibits gastric acid secretion & gastrin release, but it stimulates pepsin secretion.
- Inhibits gastric motility, contracts pylorus & slows gastric emptying, relaxes LES.
- Inhibits intestinal motility & contracts ileocecal sphincter.

Cell types of the pancreas:

Secretes a HCO_3^- rich fluid that alkalinizes & hydrates (H₂O) the protein-rich secretion of acinar cells [HCO₃⁻] = 145 mEq/L

Ductal cells


Acinar cells

Secrete a protein-rich (digestive enzymes) secretion in an **isotonic plasma-like fluid** (so enzymes will be thick in absence of ductal cells effect).

Because there is high amount of enzymes secreted from acinar cells in a little solution, it's thick \rightarrow needs solution to facilitate its move until they arrive to the duodenum to prevent duct blockage \rightarrow this solution is provided by ductal cells

 Constitute 75% of pancreatic secretion. Stimulated by Secretin secreted by S cells. 	 Constitute 25% of total pancreatic secretion. Stimulated by CCK secreted from I cells & Ach.
 Effects of Secretin are potentiated by CCK & Ach. When all these different stimuli of pancreatic secretion occur at once, then the total secretion is far greater than the sum of the secretions caused by each stimulus separately. The stimuli are said to "multiply" or "potentiate" one another. 	 Why don't these enzymes digest the pancreas? Secreted as proenzymes (inactive form) which get activated in the lumen of the intestine. If they one of enzyme activated in the pancreas for any reason trypsin inhibitor will do its role of protection. The same cells secrete a substance "trypsin inhibitor".

Pictures from the slides

I: The Main pancreatic duct joins the duct from the liver (common bile duct) and both of them open in <u>2nd</u> portion of duodenum through "papilla of vater" surrounded by Oddi sphincter.

2:Sphincter of Oddi is regulated by CCK:

□ Relax it -> secretions goes into duodenum.

 \Box Also squeeze the bile duct and pancreatic <u>duct</u> -> release components into duodenal lumen.

3:Major functions of pancreatic secretions:

I-Neutralise acid in "duodenal " chyme,

□ Possible SAQ, what's the importance of that?

I-To prevent damage to duodenal mucosa.

2-To provide optimal PH for action of intestinal enzymes.

□What's the main source of digestive enzymes of GIT? Pancreas! Because it produce enzymes for <u>all</u> types of food stuff (proteins,carb,etc..)

4:All gastrointestinal secretions are: <u>Isosmotic</u> Except (**saliva**, **Hypo**smotic)

الدكتور والدكتوره كلهم قالوا معلومة الـsalivary=Hyposmotic

5:Enteropeptidase is brush border enzyme and it's <u>NOT</u> in pancreatic tissue/duct!

Only trypsinogen is (Auto-catalytically) activated.

□ Key reaction in activation of pancreatic proteolytic enzymes is the: Release of trypsin

6:Pancreatic Amylase:hydrolyse carbs to -> MALTOSE (disaccharide)

"Pancreatic amylase vs salivary amylase

Which one of them is more powerful?

Both have <u>same potency</u> but in the mouth food stays for <u>short</u> duration (not sufficient for the activity of the enzyme), So **pancreatic amylase has physiological importance** because food(chyme) stays for sufficient time for the action of pancreatic amylase "

"Gastric Lipase - pancreatic lipase - intestinal lipase, Which is more sufficient? Pancreatic Lipase, لأنه إذا قل -> loss of fat in stool"

□ <u>More</u> activation of pancreatic <u>acinar</u> cells -> <u>more</u> production of <u>isotonic</u> solution in <u>ductal</u> cells .

هاذي نوت الدكتور، وموجوده بشكل مشابه بسلايدات الدكتورة

"Hco3 conc. increases with increasing secretion rate"

7:Secretin and CCK:

الدكتورة: site of release /stimulus/ action تنحفظ. الدكتور : "هذا من الجدول حقي اللي هو جزء من حياتي وحيكون جزء من حياتك غصباً عنك" أي جدول؟فنا

8:Functions of Secretin: الدكتورة: "هذا مهم اوي اوي يعني تعرفوه كويس جداً"

9:Functions of CCK: This function is so important: <u>Contracts</u> Gall <u>bladder</u>, <u>Relaxes</u> sphincter of Oddi.

TEST YOURSELF!

MCQ:

QI) Pancreatic secre	ation is stimulated by?		
A) CCK	B) Secretin C) Vagal stimulation D) all of them		
Q2) Trypsinogen is ac	tivated by?		
A) Enteropeptidase	B) Exopeptidases C) autocatalytically D) A+C		
Q3) Which of the following is a function of the pancreas?			
A) increase acidity of chyme	B) produce enzymes involved in digestionC) secrets mucin to protect duodenal liningD) storage of digestive enzymes		
Q4) What's the type	e of secretion pancreatic acini produces?		
A) isotonic	B) hypotonic C) hypertonic D) acidic		
	Answers: Q1:D Q2:D Q3:B Q4:A		

SAŲ:

QI) Give two examples of enzymes for each of the following classification of pancreatic enzymes:

A) proteolytic enzymes:

١. endopeptidases 2. carboxypeptidases A and B

B) Amylolytic enzymes :

- l. 2. Alpha-Amylase
- Lipases

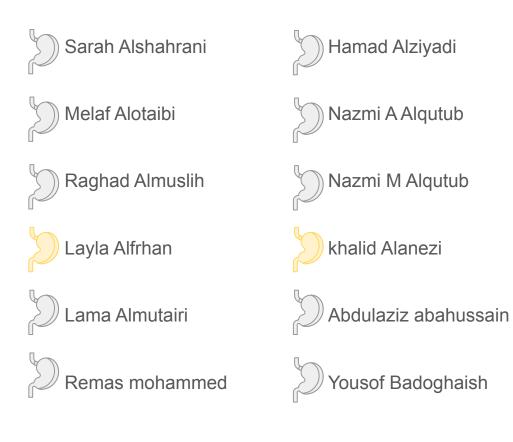
C) Nuceolytic enzymes:

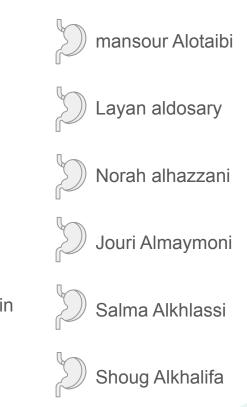
- Ribonuclease
- 1. 2. Deoxyribonuclease

Q2) Compare between phases of pancreatic secretions?

Phase	Cephalic	Gastric	Intestinal
Stimulus	Smell, taste, chewing, swallowing	Protein, Gastric distention	Fatty acid, acidity in chyme
Mediator	Neural (Vagus nerve)	Neural (Vagus nerve "Vago-vagal reflexe")	Hormonal stimulus (CCK, Secretin), Neural(vagus nerve "vago-vagal reflex").

· Team Leaders


Rafan Alhazzani


Ghaida Aldossary

Fahad Almughaiseeb

Faisal Alzuhairy

Team Members

