

Color Index

- Main text
- · Female slides
- Male slides
- Important
- Doctor's notes
- Extra notes

Objectives

- 1 To define CSF and its functions, formation and circulation
- To discuss the CSF sampling procedure (Lumbar puncture) and its indications and contraindications
- To describe the physical and biochemical laboratory investigations of CSF and the electrophoretic pattern of CSF proteins
- To study the composition of normal CSF and discuss the abnormal findings in pathological conditions
- **5** To define otorrhea and rhinorrhea

CerebroSpinal Fluid (CSF)

Definition

The liquid surrounding the brain and spinal cord It flows in subarachnoid area (the space between the arachnoid & pia mater)

Main Functions

- Physical support & protection
- Provides a controlled chemical environment ——nutrient supply & waste removal

Formation & Circulation

- CSF is formed at the choroid plexuses & by the cells lining the ventricles.
- Normal blood brain barrier is important removal for the normal chemistry results of CSF
- Rate of formation: 500 ml/day

CerebroSpinal Fluid (CSF)

Formation

- Selective ultrafiltration of plasma
- Active secretion by epithelial membranes
 Ab or waste products

Excretion (absorption)

- Excretion volume = production volume → constant CSF volume
- Absorption occurs at the arachnoid villi protruding through the dura to the venous sinuses of the brain bloodstream

Male's dr: Possible SAQ (How to collect CSF?)

Specimen & sampling of CSF

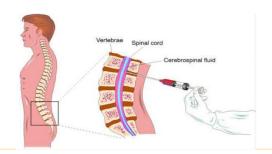
CSF Specimen collection

Obtained by lumbar puncture (At the interspace

L3-4, or lower) Using **aseptic** technique CSF sterile technique

CSF is separated into 2 aliquots (two small sample tubes):

I. for chemistry & serology


II. for microbiology

Immediate analysis because we don't want glycolysis to happen because once it happened, it may lead to wrong diagnosis.

It's a precious sample: Preserve any remaining sample. because it's not easy to obtain it like urine or blood samples, lumbar puncture sample needs skilled phusician to take it

Method of CSF Sampling

Traumatic tap (damage to blood vessel during collection) **blood in CSF**

Specimen & sampling of CSF

Indications for laboratory investigation of CSF

- CNS infection
- Demyelinating disease

- CNS Malignancy
- Hemorrhage in CNS

Contraindications for performing lumbar puncture Male's dr: Possible SAO

Bleeding diathesis

It will Increase risk of bleeding in the puncture side

Increased intracranial pressure

Increased intracranial pressure (pressure in the skull) is a contraindication, due to risk of brain matter being compressed and pushed toward the spine.

Infection at site of needle insertion

If the patient have abscess in a region near the spinal cord you should avoid inserting the needle through it, because you'll take the infection and the bacteria inside the CSF which will cause meningitis.

	Examination of CSF				
	Physical exam	nination			
Normal CSF	ColorlessClearFree ofFree of				
Cloudy turbid—> perform microscopic examination	 is usually due to leukocytes 	May be due to microorganisms Turbid CSF can either indicate bacterial or fungal infections			
	Traumatic tap				

Glucose **Protein:** Total Specific: Albumin Immunoglobulin, others (e.g. myelin basic protein; MBP) Glucose & protein are the most

Biochemical analysis

- Bright red color - RBCS in decreasing number as the fluid is sampled - 437: Not a haemorrhage, but rupture of a blood vessel during specimen collection \rightarrow blood in the CSF **Blood** (contaminated CSF) & - CSF sample in the beginning RBCs are found (red) as a result of rupturing the blood vessel, then as the needle (Hemoglobin aets deeper it's not found (white) Pigments in Subarachnoid hemorrhage (SAH) CSF) - Xanthochromia (hemoglobin breakdown pigments) = RBCs lysis & metabolism previously **occurred** (at least 2hr earlier) - #team437: Real haemorrhage due to trauma or any other causes and xanthochromia - Blood in the CSF, rupture of RBCs (like a bruise) [heme degrades-biliverdin (green)bilirubin(yellow)] When would Xanthochromia indicate hemorrhage? If you exclude: - Prior traumatic tap - Huperbilirubinemia (bilirubin > 20 mg/dL) RBCs lysis—> releases hemoglobin which releases bilirubin

reliable diagnostically & accessible analytically Lactate

Examination of CSF

Glucose and Protein in CSF

Glucose in CSF

- Glucose enters CSF via facilitative transporter (GLUT)
- CSF (glucose) is ~ 2/3 that of plasma "50 80 mg/dl" Possible MCQ
- A plasma sample must be obtained ~ 2-4 hr before CSF sample:
 - In **hypoglycemia**: (CSF glucose) may be very low, In **hyperglycemia**: (CSF glucose) is raised Directly proportional to plasma glucose level
- Measure CSF (Glucose):
 - immediately
 - or preserve the specimen with an antiglycolytic e.g. fluoride ion Fluoride ion is a glycolysis suppressor, we need it to protect glucose in obtained CSF from breaking down, thus we don't give a wrong diagnosis.

Protein in CSF

- Proteins, mostly albumin are found in the CSF (0.15-0.45 g/L)
- Source of CSF proteins:
 - 80% from plasma by ultrafiltration
 - 20% from intrathecal synthesis

Protein in CSF

• Proteins, mostly albumin are found in the CSF (0.15-0.45 g/L)

Sources of CSF proteins

80% from plasma by ultrafiltration

20% from intrathecal synthesis

production of substances within the cerebrospinal fluid

CSF Albumin

- Albumin is produced solely in the liver
- Its presence in CSF must occur through BBB

Abnormal CSF Glucose & total proteins

)

- Not clinically informative
- Provides only confirmation of hyperglycemia

↓CSF (glucose)

(hypoglycorrhachia) Male's dr: Possible SAO

- Disorder in carrier-mediated transport

e.g. TB meningitis, sarcoidosis

Active metabolism of glucose by cells or organisms: e.g. acute purulent, amebic, & fungal meningitis

CSF (glucose) is usually normal viruses don't use glucose thats why its not decreased in viral infections

Increased metabolism by the CNS e.g. by CNS neoplasm

In viral meningitis

Abnormal ↑ CSF

(Total protein)

- Must be compared to the serum (protein)
 - Useful nonspecific indicator of pathological states: Lysis of contaminant blood (traumatic tap)
- ↑ permeability of the epithelial membrane due to:
 - 1- Bacterial or fungal infection
 - 2- Cerebral hemorrhage
- ↑ production by CNS tissue in:
 - 1- Multiple sclerosis (MS)

 - 2- Subacute Sclerosing Panencephalitis (SSPE) **Obstruction** e.g. in:
 - 1-Tumors
 - 2-Abscess

CSF Albumin and Immunoglobulin

CSF Albumin

- Albumin is produced solely in the liver
- Its presence in CSF must occur through BBB

CSF IgG can arise from:

- CSF IgG can Plasma cells within CSF
 - The blood through BBB

↑ IgG and normal (Alb) of CSF suggests local production of IgG, eg-

Multiple Sclerosis (MS)

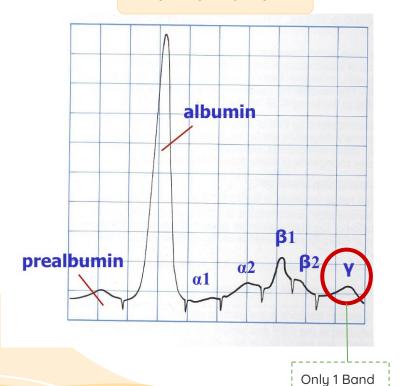
Subacute Sclerosing Panencephalitis (SSPE)

What to do if \CSF protein was detected

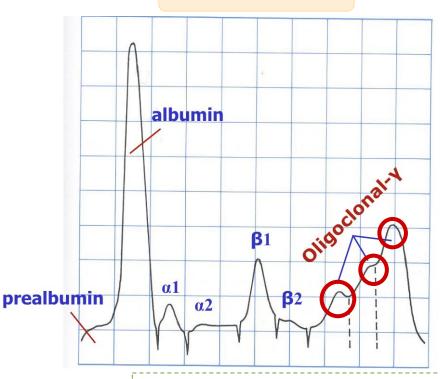
• Perform electrophoretic separation

Important!
It might come as SAQ.

If multiple banding (oligoclonal bands) of the γ -globulin is detected, the following differential diagnosis is suspected:


Multiple Sclerosis

Subacute Sclerosing Panencephalitis (SSPE)


Inflammatory Diseases

CSF Electrophoresis

Normal Pattern

Oligoclonal Banding

Male Dr.: "Oligo- usually refers to anything less than 5, in this case it's oligoclonal bands because we see 3"

Other Chemical components of CSF

In comparison to plasma Important! It might come as MCO. Lower in CSF **Higher in CSF** Calcium Chloride **Potassium** Magnesium **Phosphates** Abnormal CSF [Chloride] Marked ↓↓ in acute bacterial meningitis Slight ↓ in viral meningitis & brain tumors

Otorrhea and Rhinorrhea

Otorrhea

• Leakage of CSF from the ear

Rhinorrhea

• Leakage of CSF from the nose

Protein

Glucose

Chloride

Calcium

Phosphorus

Magnesium

Potassium

and know the range for glucose

(>50% plasma level)

115 - 130 mmol /L

1.0 - 1.40 mmol/L

0.4 - 0.7 mmol/L

1.2 - 1.5 mmol/L

2.6 - 3.0 mmol/L

50 - 80 mg/dL, (2.8-4.2 mmol/L),

0.15 - 0.45 g/L

Normal	Composition	of CSF
	Normal composition of CSF	Male's dr: know its comparison to plasma and know the range for glucose

Clear ,Colorless

<5/mm³

Nil

7.4

100 - 150 ml

450 - 500 ml

1.006 - 1.007

Appearance

Lymphocytes

Polymorphs

рΗ

Total Volume

Daily Secretion

Specific Gravity

Normal	Composition	of	CSF

Abnormal Findings of CSF in some Pathological Conditions

Tuberculous Meningitis

Often fibrin web

Mononuclear

(lymphocytes)

10-1000

Often none in smear

1-5 (个 个)

<1/2 plasma (↓ ↓)

Viral Meningitis

Usually the findings of viral meningitis are

Usually clear

Mononuclear (lymphocytes)

50-1000

-ve smear or culture

<1 (Normal)

>1/2 plasma

(Normal or slightly \checkmark)

Normal or **↓**

Parameter (Reference Range)	Condition

Bacterial Meningitis

(pyogenic)

Often turbid

Polymorphs

90-1000+

+ve smear & culture

>1.5 (个 个)

<1/2 plasma (↓ ↓)

Appearance

Predominant cell

Cell count/mm³

Bacteria/virus

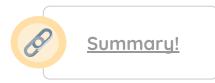
Protein (0.15-0.45 g/L)

Glucose (2.8-4.2 mmol/L)

Chlorides (115 - 130

mmol/L)

Take Home Messages


CSF is formed in the choroid plexus

It is essential for the physical protection of the CNS

The physical & chemical analysis of CSF is essential for diagnosis of certain diseases

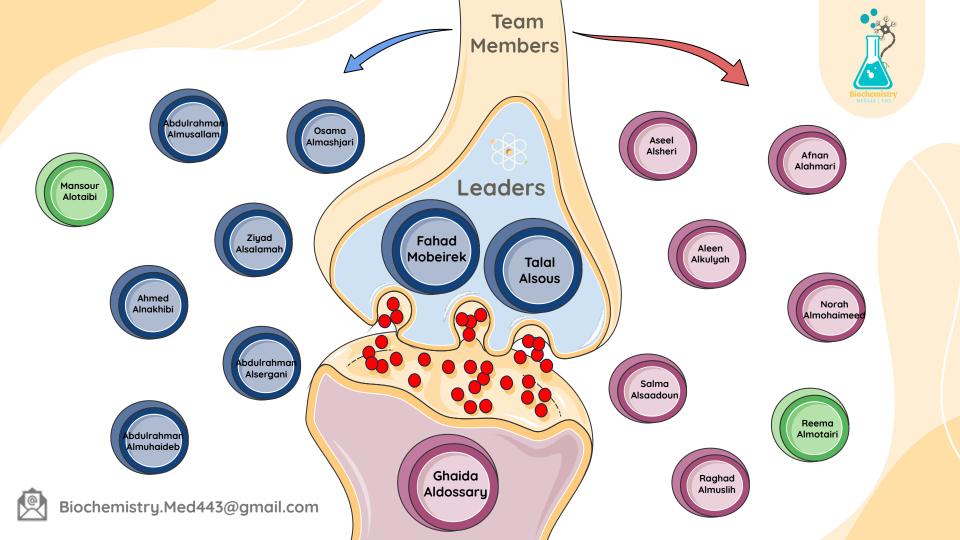
Q1: Mg and Cl are HIGHER in CSF than plasma							
Α	True	В	False	С	Depends	D	idk
Q2: A patient has 35 mg/dl glucose in CSF, what's his condition?							
Α	Normal	В	hypoglycorrhachia	С	DM	D	Viral meningitis
Q3: Hypoglycorrhachia happens in which of the following?							
Α	Viral meningitis	В	Kidney neoplasm	С	Sarcoidosis	D	Multiple sclerosis
Q4: A CSF sample was taken from a 64-years old female for her annual check up, the biochemistry lab noted the presence of oligoclonal band of of γ-globulin In electrophoresis, this can indicate which of the following?							
Α	Bacterial meningitis	В	Fungal meningitis	С	Viral meningitis	D	SSPE
Q5: Which of the following is defined as hemoglobin breakdown pigments, which will lead to RBCs lysis and metabolism?							
Α	Xanthochromia	В	Traumatic tap	С	Purulent meningitis	D	Hyperbilirubinemia

Q6: Patient presents with persistent headaches and neurological symptoms, CSF analysis has been deemed necessary. What's the procedure where CSF is collected and how is it done?

Answer:

Obtained by lumbar puncture (At the interspace L3-4, or lower)

Q7: List the contraindications for performing Lumbar Puncture


Answer:

- Bleeding diathesis
- Increased intracranial pressure
- Infection at site of needle insertion

Q8: List 3 causes of hypoglycorrhachia

Answer:

- Disorder in carrier-mediated transport
 a TR maningitis sarcaidosis
- Active metabolism of glucose by cells or organisms:
- Increased metabolism by the CNS
 e a bu CNS peoplasm

