Measures of Disease Frequency

Lecture No. 14

Objectives:

1. To explain counts, proportions, ratios and rate
2. To calculate measures of disease frequency (prevalence \& incidence)
3. To know how to compare rates
4. To select appropriate measures for different context
~ This lecture was presented by Dr. Basma

Almujadadi

\sim It is included in the Midterm Exam
\sim We highly recommended reading the Ayah in the first page

Slides

Color code
Original text
Dr. Notes
Important Golden note Extra

Editing file

1. Measures of disease frequency "quantity" To measure disease frequency is to quantify the occurrence of disease in populations.
2. Measures of association (effect)
3. Measures of potential impact

المختصر في التفسير
أفمن شرح الله صدره للإسلام، فاهتدى إليه، فهو على بصيرة من ربه، مثل من قسا قلبه عن ذكر الل؟! لا يستويان أبدًا, فالنجاة للمهتدين، والخسران لمن قست قلوبهم عن ذكر الله، أولئك في ضلال واضح عن الحن الحق.

Measures of disease frequency

Mathematical parameters:

1. Counts

Determine causes of any health problems
2. Fractions (Rate, Ratio, Proportion/Percentage)

Epidemiological measures:

1. Prevalence
"based on it they built the epidemiological measures"
2. Incidence

How many people have this disease?

- The most simple and basic measure used in epidemiology
- The absolute number of people who have disease or characteristic of interest or health phenomenon being studied "counting cases"
- Useful for allocation of resources (e.g. quantity of ORS "oral rehydration solution" needed for diarrheal cases)
- Useful for surveillance of infectious disease such as early detection of outbreaks.

Rate

- Measures the frequency of events that occurred at a specific/defined period of time divided by the average population at risk.

Rate gives us a more detailed picture of frequency

- Used to compare experiences between populations at different times, different places or among different classes of people.
- Composed of: Numerator (بسط), denominator (بقا), time specification and multiplier.

Ratio

- Is a fraction in which the numerator is not a part of denominator "not related to each other" and it is calculated by dividing one variable by the other; e.g., Male:Female
- Relation of size between two random quantities without implying any specific relationship between the numerator and denominator $(\mathrm{a} / \mathrm{b})$.
- The numerator and denominator are mutually exclusive (neither included in each other).

Proportion

- Is a fraction where the numerator is included in the denominator e.g., number of male births/total births

- Are dimensionless "they use the same unit so they cancel each other" as in it doesn't have a unit of measure and always lies between 0 or 1
- Often expressed as a percentage $\%$

Incident and attack rate

Incidence

- Measures new cases of disease, the number of individuals who develop a specific disease or experience a specific health-related event during a particular time period.
- Typically calculated as a proportion or a rate.
- This is the primary outcome of experimental and cohort studies "Gives you a cause and effect so best used for: experimental and cohort studies"
- This is what it is needed for the investigation of causal inference and determining risk factors.

> Incidence proportion =
> number of new cases in a population during a specific period of time
total population at risk "disease free" during the specific period of time $\times 10^{\text {n }}$

Attack Rate (AR)

incidence proportion

- Is a type of incidence measure that is calculated in acute recurrent diseases and mostly in outbreak investigations "how long a person wait to develop the disease" $\mathrm{AR}=$ No. of episodes during a specified period

Population at risk during the same period x 10 n "usually 100 but we need a $\%$ "

$$
\text { Attack rate }=\text { incidence risk }=\text { incidence proportion }
$$

Example: مار حشأل عنها

- During an outbreak of shigellosis, 18 people in 18 different households became ill.

The population of the community was 1,000 .
Calculate the attack rate?
Attack rate $=$ no. of new cases $/$ population at risk $\times 100=$
$18 / 1,000 \times 100=1.8 \%$.

Prevalence

Prevalence

- Measures new and pre-existing cases of disease, the total number of individuals in a population who have a disease or health condition at a specific period of time.
- Usually expressed as a percentage of the population.
- This is what it is needed for understanding the magnitude of a health problem.
- Useful for assessing the health status of a population, current burden of disease and thus planning the appropriate health services.
- This is the primary outcome of cross-sectional studies.

Two types of prevalence

1 Point prevalence for the estimates at a specific time.

2 Period prevalence for the estimates within a range of time.

Point Prevalence $=$ Total cases $($ old + new $)$ at fixed point of time in place
Total population at risk in the same place and time $\times 10^{\text {n }}$

Period Prevalence $=$ No. of existing cases (old + new) of a specified disease during a given period of time interval
Estimated mid-interval population at risk"give you an average" $x \mathbf{1 0}^{\mathbf{n}}$

Title

Example:

At the beginning of 1980 there were 55 existing cases of stomach cancer in New-Delhi. During 1980, 75 new cases of stomach cancer were diagnosed. Midyear population of New-Delhi in 1980 was

522,922.
Calculate the incidence of stomach cancer in New-Delhi in 1980?
Calculate the prevalence of cancer stomach in New Delhi, India in 1980?

Incidence $=$ new cases $/$ population at risk $\times 100,000=$
$=75 / 522,922 \times 100,000$
= 14.3 / 100,000 population
Prevalence $=$ total cases $/$ midyear population X 100,000
$=(55+75) / 522,922 \times 100,000$
$=24.86$ per 100,000 population

| | Point prevalence | Period prevalence | Incidence risk | | Incidence rate |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

الأعضاء:

رغد النظيف
 ثهـ البخاري نون الظمعان أثـر الامرمي وعد ابوختا
ثراء الهويث

نار الزهراني

MCQ:

Q1: which of the following assess the incidence?
A. Case control
B. Cross sectional
C. Case report
D. Cohort

Q2: in cross sectional study, what measure of disease frequency is used?
A. Prevalence
B. Incidence rate
C. Relative risk
D. Incidence proportion

MCQ:

Q3: what is best way to measure existence of disease in population?
A. Odd ratio
B. Relative risk
C. Prevalence
D. Incidence

Q4: what is the appropriate measure to estimate the risk of CVD during 7 years of follow up period?
A. Risk ratio
B. Point Prevalence
C. Incidence risk

