Confounding \& effect modification

Tutorial No. 5

Objectives:
~ This lecture was presented by Dr. Nour Horanieh
\sim It is included in the Midterm Exam
\sim We highly recommended reading the Ayah in the first page

Slides

Color code

Original text
Dr. Notes
Important Golden note Extra

Editing file

Equations

Relative Risk (RR)

Contingency (or 2 X 2) Table

	Cases	Controls	Total	88
Exposed	a	b	$a+b$	
Unexposed	c	d	c+d	وإن لكم - أيها الناس - في الإبل والبقر والغنم لعظة تتعظون بها، حيث نسقيكم من ضروءعها لبنًا خارجُا من
Total	$a+c$	$b+d$	$a+b+c+d$	

$$
\mathbf{R R}=\mathbf{I E} / \mathbf{I U}=[\mathbf{a} /(\mathbf{a}+\mathbf{b})] /[\mathrm{c} /(\mathrm{c}+\mathrm{d})]
$$

Incidence rate

Incidence among exposed $=\frac{\mathbf{a}}{\mathbf{a}+\mathbf{b}}$
Incidence among non-exposed $=\frac{\mathbf{c}}{\mathbf{c}+\mathbf{d}}$

Estimation of risk

Relative Risk:
$\mathbf{R R}=\frac{\text { Incidence of disease among exposed }}{\text { Incidence of disease among non-exposed }}$

$$
=\frac{\mathbf{a} / \mathbf{a}+\mathbf{b}}{\mathbf{c} / \mathbf{c}+\mathbf{d}}
$$

Relative risk and Confounding (Tutorial)

Odds Ratio (OR)

Contingency (or 2×2) Table

	Cases	Controls	Total
Exposed	a	b	$\mathrm{a}+\mathrm{b}$
Unexposed	c	d	$\mathrm{c}+\mathrm{d}$
Total	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

$$
\mathrm{OR}=\frac{\text { Odds that case was exposed }(\mathrm{A} / \mathrm{C})}{\text { Odds that a control was exposed (B/D)}}=\frac{\mathrm{AD}}{\mathrm{BC}}
$$

احفظو ها على كلمة ادبس

Confounding

Confounding is a situation in which a measure of the effect of an exposure is distorted because of the association of exposure with other factor or factors that influence the outcome of interest.

Example

	CHD (Yes)	CHD (No)	Total
Bald	775	9,225	10,000
Hairy	190	9,810	10,000
	965	19,035	20,000

$R R=(775 / 10,000) /(190 / 10,000)=4.08$ So the risk of CHD in bald men is 4.08 times more than in hairy men.

CHD is Coronary heart diseases

Is it real association or due to confounder?

It is due to a confounder. (Bald men are older, we have to consider the age)

Stratify data and study the effect of age between old and young subjects:

Older subjects (aged greater than 65 years)				RR in the older men:
	CHD (Yes)	CHD (No)		$\begin{gathered} (750 / 7,500) /(100 / 1,000)=1 \\ R R=1 \text { (No risk and no } \\ \text { association) } \end{gathered}$
Bald	750	6750	7500	
Hairy	100	900	1000	
	850	7650	8500	
Younger subjects (aged between 40 and 64 years)				RR in the younger men:
	CHD (Yes)	CHD (No)		$\begin{gathered} (25 / 2,500) /(90 / 9,000)=1 \\ R R=1 \text { (No risk and no } \\ \text { association) } \end{gathered}$
Bald	25	2475	2500	
Hairy	90	8910	9000	
	115	11385	11500	

$\mathbf{R R}$before stratification (It is the crude which means: Before we see who is old and who is young)
$\mathbf{R R}$ among older subjects (Stratified)
$\mathbf{R R}$ among younger subjects (Stratified)
Thus age is a confounder in this study.

Exercise 1

This study was carried out in 9400 patients among people aged 60 and above. Records of patients with and without bed sores were examined for outcome.

Calculate the risk and determine whether medical severity (high \& low) is a confounder?

	Died (Yes)	Died (No)	
Bed sores (Yes)	79	745	824
Bed sores (No)	286	8290	8576
	365	9035	9400

Answer:

$\mathrm{RR}=\mathrm{a} /(\mathrm{a}+\mathrm{b}) / \mathrm{c} /(\mathrm{c}+\mathrm{d})=(79 / 824) / 286 / 8576=2.9$ (Crude relative risk)
Thus the probability of death was 2.9 times high in people with bedsores

Risk of bed sores and death in high medical severity group

	Died (Yes)	Died (No)	Total
Bed sores (Yes)	55	51	106
Bed sores (No)	5	5	10
	60	56	116

Answer:

$\mathrm{RR}=$ Relative risk $=\mathrm{A} /(\mathrm{A}+\mathrm{B}) / \mathrm{C} /(\mathrm{C}+\mathrm{D})$
$=(55 / 106) /(5 / 10)=\mathbf{1 . 0 4}(R R$ in high medical severity $)$

Exercise 1, cont.

Bedsores and death in low medical severity group

	Died (Yes)	Died (No)	Total
Bed sores (Yes)	24	694	718
Bed sores (No)	281	8285	8566
		305	8979
Answer.			9284

Answer:

$\mathrm{RR}=$ Relative risk $=\mathrm{A} /(\mathrm{A}+\mathrm{B}) / \mathrm{C} /(\mathrm{C}+\mathrm{D})$
$=(24 / 718) /(281 / 8566)=\mathbf{1 . 0 2}(R R$ in low medical severity $)$

RR before stratification (Crude)	$\mathbf{2 . 9}$
RR among high medical severity (Stratified)	$\mathbf{1 . 0 4}$ almost 1
RR among low medical severity (Stratified)	$\mathbf{1 . 0 2}$ almost 1

Hence we conclude that (medical severity) is a confounding variable.

These two (stratified values) are almost 1 which means that there are equal and are different from the crude (2.9).
So this factor is a confounder.
The stratified values are almost equal and are different from the crude so there is a confounder.

Example:
Crude is 6 (Before the stratification)
Stratified is 3
Stratified is 3
So the stratified values are equal and are different from the crude, then it is a confounder.

Another example:
Crude is 2
Stratified is 2
Stratified is 2
All of them are equal so it is NOT a confounder

Exercise 2

In a case control study discussing diabetes, CHD and age.
Draw the diagram showing causal association between the variables. With the given data, determine, whether age $<40 \& \geq 40$ is a confounder ?

Age can be a confounder

Diabetes Exposure	CHD (Yes) Outcome	CHID (No)
Yes	30	18
No	70	82
	100	100

Answer:

$\mathrm{OR}=30^{*} 82 / 70 * 18=\mathbf{1 . 9 5}$ (This is the crude odds ratio)
People with diabetes have 1.95 times higher risk of CHD than people without diabetes.

Age	Exposed	Cases Yes	Cases (No)	OR
<40	Yes	5	8	$\mathbf{1 . 0}$
No	45	72	$\mathbf{1 . 0}$	
≥ 40	Yes	25	10	10

OR before stratification	1.95
OR among older subjects	1
OR among younger subjects	1

Thus, age is a confounder in this study.

Those are equal and are different from the crude (1.95). Then it is a confounder
نوان التركي عـي القادة: علحـي الله الشهـي

送

الأعضاء:

رغد النظيف
ريما الجريبة
شهد البخاري
نوف الضالعان
أثير الاحمري
وعد ابونخاع
ثراء الهويش
في الدوسري
منار الزهراني
?

عبدالله التركي عبيالله المياح
محمد الزير عـر عـير
تر تمان الدريهم

ناصر الغيث
سعد السهي
رائد الماضي
سعود الشعلان محمد الحصيني

شكر خاص لتاله شاهين على المالـظات

