

Musculoskeletal Physiology
(I) Physiology of Excitable
Tissues: Nerve and Muscle
(namely Skeletal Muscle)

by

Dr Faten Abdulhady Zakareia
Physiology Department, College
of Medicine, King Saud
University

Lecture 4&5

The Action Potential and Properties of Nerve Fibers

by

Dr Faten Abdulhady Zakareia
Physiology Department, College of Medicine,
King Saud University

Lecture 2&3: nerve action potential &properties of nerve fibers

Objectives

- By the end of this lecture, the student should be able to:
- Appreciate Changes that occure through the nerve after stimulation by threshold (effective) stimulus
- Define and draw giving membrane potential in mV and time course in msec and label all components such as threshold (firing level), depolarization, spike overshoot, repolarization and positive after potential
- -Identify different types of voltage –gated channels
- -Correlate the conductance changes with opening (activation) or closing (inactivation) of relevant gates.
- Distinguish between a local potential and an action potential.
- -Define absolute and relative refractory period on basis of excitability changes
- Classify neurons by using letters or numbers on basis of diameters and velocity.
- Define myelin sheath, myelinated and unmyelinated nerve fibers
- Describe differences in the propagation of action potential in myelinated and unmyelinated nerve fibers.
- Define all and none law.
- Differentiate monophasic, biphasic and compound action potential.

Changes that occur in the nerve after stimulation by an effective stimulus are:-

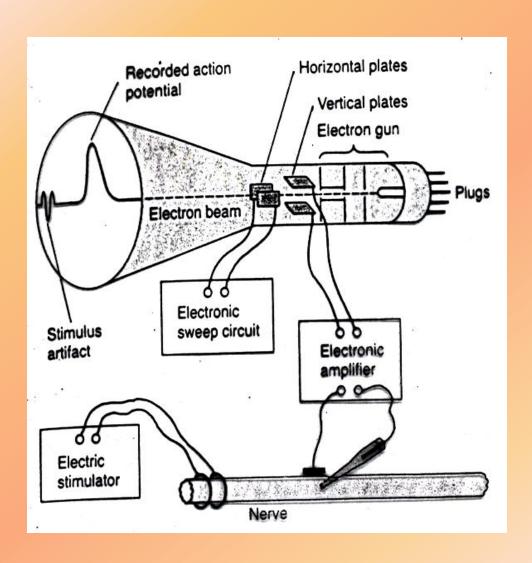
- 1-Electrical changes
- 2- Excitability changes
- 3-Thermal changes
- 4-Chemical changes

1- Electrical changes The nerve action potential

-The nerve action potential

It is potential difference along nerve membrane after stimulation

by Threshold (effective)stimulus


-Nerve signals (impulses) are transmitted as nerve action potentials conducted along the nerve fiber as a wave of depolarization to its end

-The channels necessary for nerve action potential are:-

Voltage gated Na+ & k+ channels

-

During action potential we use oscilloscope to measure rapid changes in membrane potential

The stages of acion potential are:-

- 1-RMP:-At the <u>resting state(no stimulation)</u> the membrane is <u>polarized</u> (-ve inside= -90 mv)
- 2-Depolarization: sudden Na inflow (influx)

 → polarizesd state is lost & potential rises to positive values (reach zero & overshoot to +ve values).
- 3-Repolarization: Na channels close & K channels open & K outflow (outflux)to outside → restoration of the normal –ve RMP.

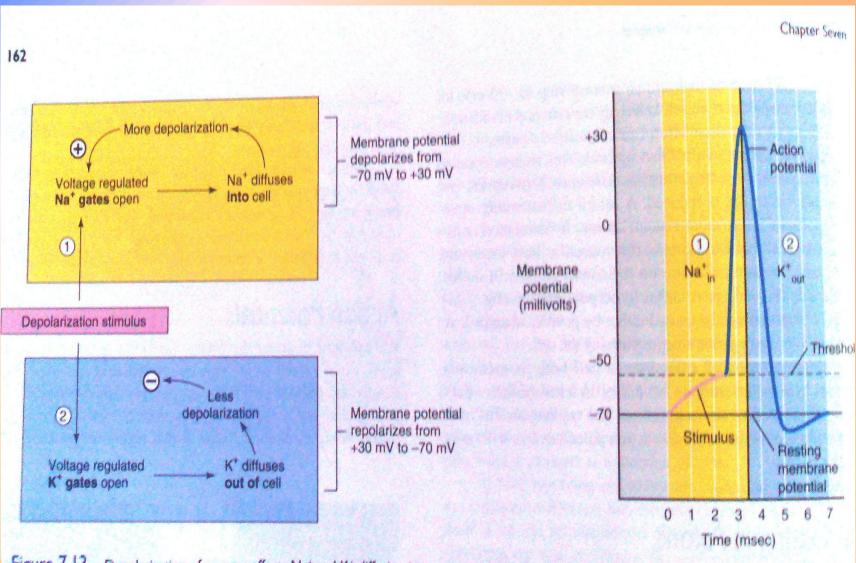
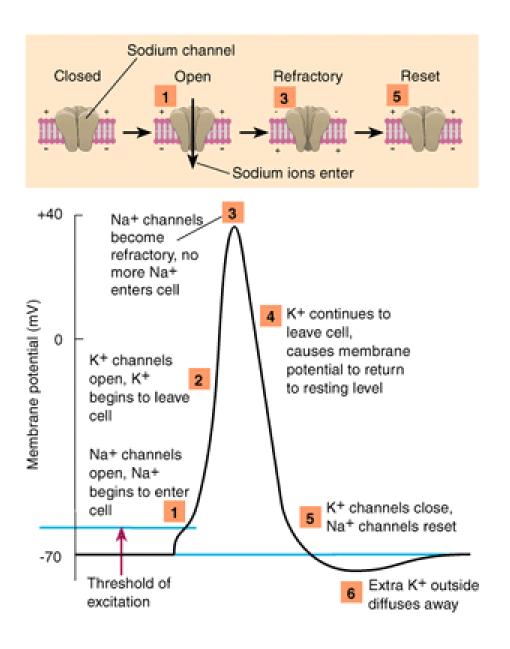


Figure 7.13 Depolarization of an axon affects Na⁺ and K⁺ diffusion in sequence. (1) Na⁺ gates open and Na⁺ diffuses into the cell. (2) After a bnef


Summary of events that causes AP:-

1-Initiation of Action Potential (AP)
& +ve feedback vicious circle opens Na channels
CAUSING DEPOLARIZATION STAGE

- -90 mv is the resting potential
- a- Gradual depolarization stage:-
- Threshold stimulus (A stimulus strong enough)----- cause voltage gated Na channels to open & Na influx rises resting potential from -90 towards zero
- as membrane potential raises ----- open more Na channels & more Na influx (+ve feedback vicious circle) until all voltage gated Na channels open.
- -A sudden increase in membrane potential from -90 to -65 mv cause explosive opening of all Na channels & Na conductance is 5000 times great → massive Na+ influx,
 - so -65mv is called firing level.

- b-Depolarization occurs & membrane potential reach zero value & overshoot to reach + 35 mv (reversal of polarity) occurs & the inside of the cell becomes +ve
 - The peak of AP is reached at (+35 +40 mV).
- All Na + channels become refractory & no more Na+ entry
- At + 35 mv all Na channels begin to <u>close</u> suddenly (<u>Depolarization ends</u>)

► The Movements of Ions During the Action Potential

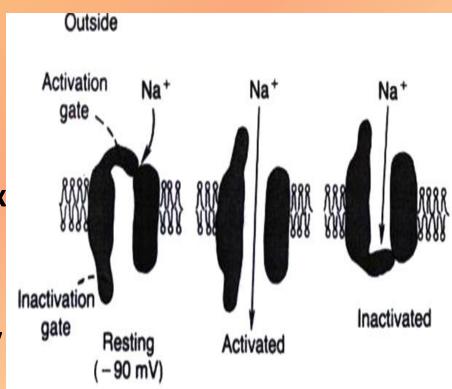
- <u>c-Repolarization</u>: due to high K conductance (flow) to outside (K outflux) by openning of all K channels
- (& zero flow of Na to inside as all Na channels close)--causes negativity inside
 - -Membrane returns to resting potential (drop from +35mv towards zero then to negative resting potential -90 mv)

D- positive after potential (In some nerves) membrane potential becomes more negative than resting level,

because many K channels remain open & K
outflux continue- causing more -ve
inside = hyperpolarized)

-(positive after potential is wrong terminology it is historical one)

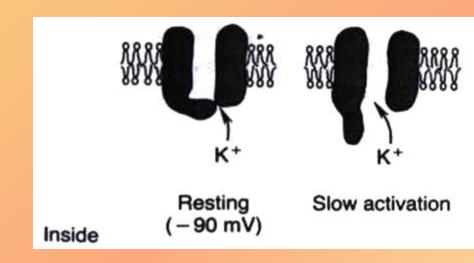
- E- Re-establishment of Na & K ionic gradients & return to resting potential:-
- a- Na that had influxed in & K that had oufluxed out returned to original state by Na-K pump (active process need ATP & ATPase)
- b- Closure of some K channels


Duration of nerve action potential is 1-1.5 ms

The factors necessary for depolarization & repolarization are:-

- 1-Na voltage –gated channels important for both depolarization & repolarization
- 2- K voltage –gated channels important for repolarization

A- Voltage –gated Na channels:-


- -outer activation gates& inner inactivation gates.
- 1-Resting state:-at RMP -90 mv activation gates close & inactivation gates open
- No Na entry.
- 2- Activated state:-after stimulation, the membrane potential rises at a voltage between -70 to -50mv, conformational change occur & activation gates open (now both gates are open)& Na influx
- 3- Inactivation state:- inactivation gates close slowly while the activation gate is still open stops Na influx & they close completely at 354mv & repolarization begins.

B-Voltage –gated K channels:-

1- Only one gate,

- -at RMP (resting state) the gate of K is closed & no K pass to out.
- 2- after stimulation & between -90 to zero mv, Shortly after depolarization, when the sodium channel begins to be inactivated, the potassium channel opens slowly & K outflux begins causing repolarization
- (they open completely only when Na gates close & when Na influx stop)

-Acute local potential (acute local response):

A very weak stimulus (not threshold) can cause local change in membrane potential e.g from -90 to -85 mv which is not sufficient for regeneration of AP, this is

acute subthreshold potential (which is graded and does not propagated). which should increase to threshold level to produce AP.

-The AP differs from local response in that AP is:-

- (1) not graded
- (2) obeys All-or None Law
- (2) propagated (conducted for long distances.

All or nothing principle:-

- -i.e The nerve respond to a threshold stimulus maximally or does not respond at all (there are no half solutions)
- -- Once threshold stim applied it gives AP produced & spread all over the nerve ,its intensity can not increased by increasing stimulus intensity (or by suprathreshold)
- subthreshold stimulus can not elicit action potential (but a local response (EPSP) can be produed it does not obey this law)

Direction of propagation of AP:-

- In one direction from axon hillok to nerve terminal
- (experimentally) if nerve stimulated at its midportion, AP pass in both directions

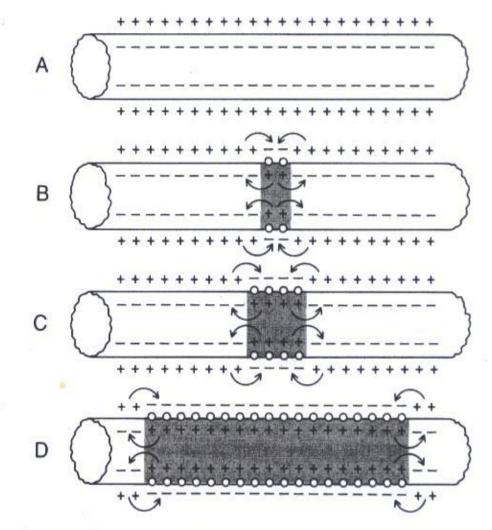


Figure 5-8 Propagation of action potentials in both directions along a conductive fiber.

Na & K conductance (flow) during action potential:-

- 1-At resting state, before AP:K conductance through K leak channels is 50-100 times as Na.
- 2- At onset of action potential:voltage gated Na channels activated & Na conductanceis
 5000 folds, at the same time voltage gated K channels
 begin to open slowly
- At depolarization Na conductance/ K conductance >1000 fold
- 3- At peak of AP Na channels close & <u>voltage gated K channels</u> open&, K conductance <u>increase</u>
- **_-** At repolarization the ratio Na conductance/ K conductance decreases.
- 4-At end of AP ,return to -ve potential , close K channels& no K+ conductance

2-Excitability changes: the ability to respond to a second stimulus

1-Latent period

2-absolute refractory (متمرد)period :-

- During depolarization & early repolarization
- during it the nerve can not excited by a <u>a second stimulus</u> & a second action potential can not be elicited whatever strength of the stimulus (even suprathreshold)
- -(because all Na channels are already opened & Na influx occurred & a new stim can not open further

2- Relative refractory period:-

- -It is ½ to 1/4 absolute refractory period, late third of repolarization
- -it is the period during which a second action potential of low amplitude <u>can be elicited</u> by stimulus stronger than normal <u>suprathreshold</u>)

because:

- 1- some Na channels still inactive so need stronger stim to open
- 2- rapid flow of K to outside during repolarization

Types of Nerve Fibers

Classification According to Myelination

1- myelinated : have myelin sheath (diameter more than 1um)

1-type A

-__(e.g somatic (motor) nerves to skeletal

2-type B fibers

-(as preganglionic autonomic nerves).

2- unmyelinated have no myelin sheath

(diameter less than 1um)

-type <u>C</u> (postganglionic autonomic &pain fibers)

<u>Classification According to Diamete</u>

A, B & C fibers

Diameter: A>B>C

Because conduction velocity depends upon diameter, A are fastest and C are slowest

- Myelin sheath is formed by schwann cell which deposit lipid substance called sphingomyelin
- Interrupted at nodes of Ranvier (2-3 micron) at the junction between 2 cells.

Functions of myelin sheath

- 1-insulator
- 2-decrease ion flow through the membrane
- 3- increase conduction velocity
- 4-protection
- 5- conserve energy during transmission of AP

Propagation of action potential (Transmission of depolarization process along a nerve = spread of nerve impulse

1- in myelinated nerve fibers:-Saltatory conduction (jumping)

✓-AP occurs at nods of Ranvier & directed from node to node, through axoplasm inside & ECF outside by jumping

APs can develop only at the Nodes of Ranvier

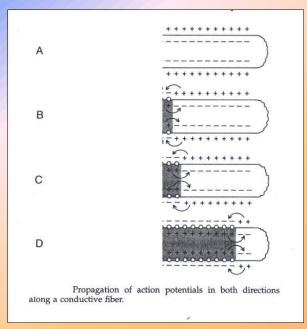
→ Where

- (1) ions can relatively easily flow in & out
- (2) there are voltage-gated channels

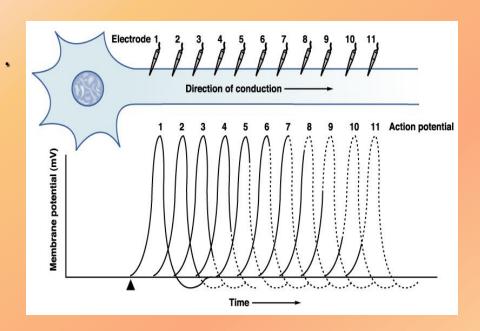
Value:-

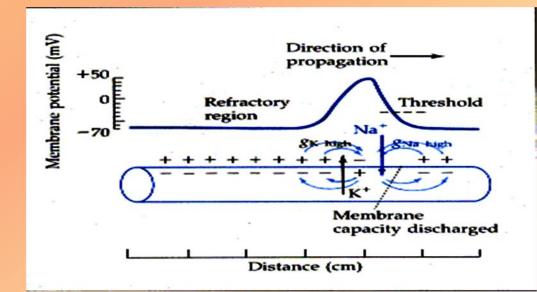
1-↑ velocity of conduction

2-Conserve energy for axon because only nodes depolarize


3-Insulation by myelin sheath allow repolarization to occur rapidly

2- Non- myelinated nerves:-


(local circuits)=Continuous Conduction =point to point


-depolarization pass by <u>local circuits</u>. -depolarization in an area, + ve charge carried inward by Na ions flow for several 1-3 mm in the axon core & increases the voltage inside the nerve to threshold value to cause depolarization in a new area & Na channals open & depolarization spread to new areas

Propagation (Conduction) of AP: By Circular Current Flows

Point-to —Point conduction in unmyelinated nerve

Recording of AP:- by cathode ray oscilloscope

- 1-Monophasic AP:- one microelectrode outside & one inserted into nerve fiber
- 2- Biphasic AP:- 2 microelectodes placed on outside of nerve fibers (biphasic mean in one direction then in second direction