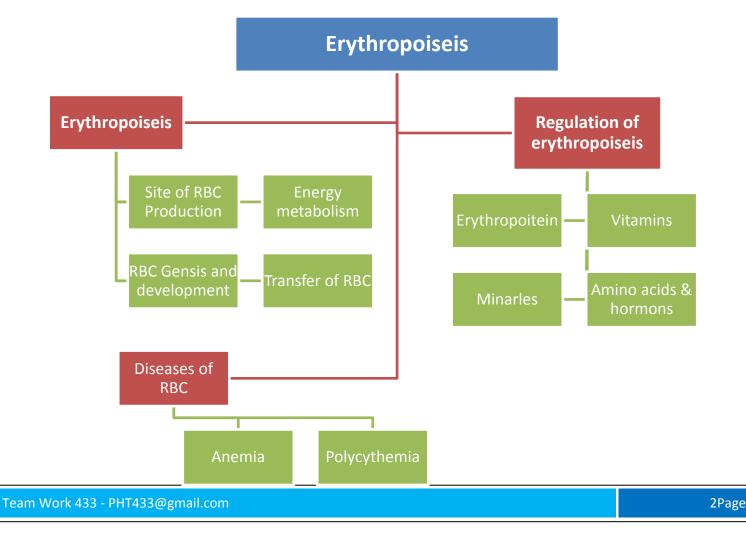


- Constant of the second secon

Lecture 8: Erythropoiesis & Regulation

Othr Abdu	ahed Otayf nan Abed ullah bin Juriys id Al Nasser	Awatif Alenazi Maha Al zahrani Latifa Al batli		
	Blue = Main Topic Violet = sup topic	White &Black = Addition		

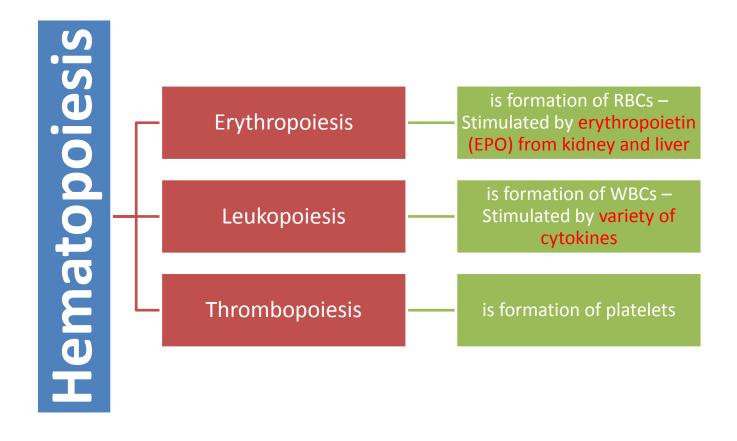
Contact us: PHT433@gmail.com


Team Work 433 - PHT433@gmail.com

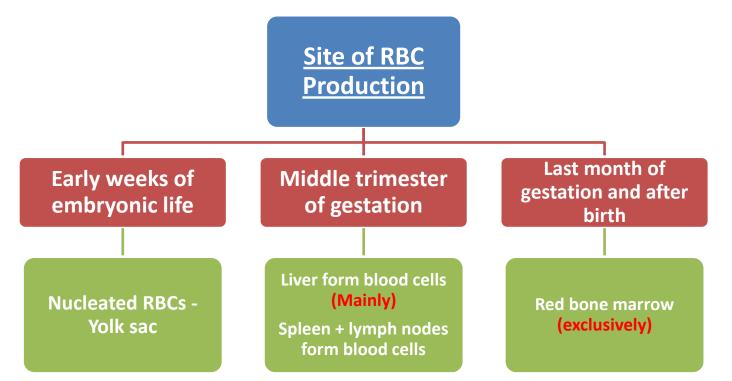
Objectives:

- Sites of Erythropoiesis
- Main features of different stages of Erythropoiesis
- Features of mature RBCs
- The regulation of RBC production and erythropoietin
- hormone secretion in response to hypoxia
- Describe essential elements needed for RBC formation .
- Describe the process of Vit B12 absorption and its malabsorption .
- Recognize the structure and the function of hemoglobin.
- Understand the metabolism of iron (absorption, storage and transport).
- Recognize the causes of anemia and polycythemia.

Mind map

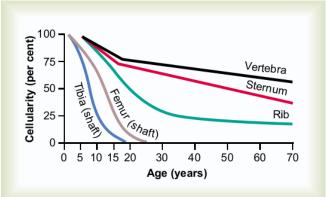


Hematopoiesis


Is a formation of blood cells from stem cells in:

- 1- The red bone marrow (myeloid stem cell)
- 2- Lymphatic tissue (lymphoid stem cell)

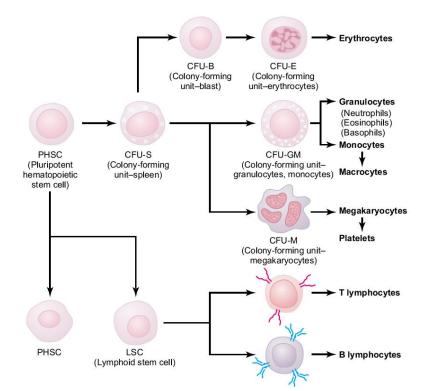
Erythropoiesis:



RBC Production after birth

After birth until 5 years: The bone marrow of all bones (except for the proximal humerus and tibia of the long bones)

After the age of 20 years: No more red blood cells are produced except the marrow of the membranous bones, such as:


- Vertebrae, Sternum, Ribs, and Ilia

Genesis (Production) of RBC :

- 1- The blood cells begin their lives in the bone marrow from a single type of cells called: The pluripotential hematopoietic stem cell
- 2- the pluripotential stem cells, become committed to a particular line of cells called: committed stem cells
- 3- A committed stem cell that produces erythrocytes is called a colony-forming unit-erythrocyte, the abbreviation CFU-E is used to designate this type of stem cell.

There are some essential factors for RBC Production such as

Growth inducers (interleukin-3) and differentiation inducers

RBC development is characterized by:

- A decrease in cell size
- A disappearance of nucleus
- An appearance of hemoglobin

RBC development

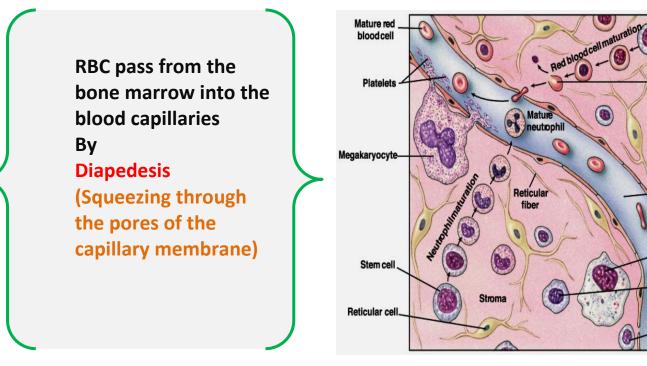
ТҮРЕ	DAY	NUCLEUS	NUCLEOLI	HEMOGLOBIN	MITOSIS	NORMOBLAST
Proerythroblast	1	12 um	Contain nucleoli	No hemoglobin	-	-
			Erythroblast			
Basophil	2	Contain Nucleus	disappear	Hemoglobin starts	Show mitosis	Early
Polychromatophil	3	smaller	-	Hemoglobin increases	-	Late
Orthochromatic	4	small dense nucleus- Nuclear lysis and extrusion	-	Hemoglobin increases	-	Normoblast
		N	luclear extrusi	on		
Reticulocyte	5-7	_	-	80%	-	-
Erythrocytes	-	-	-	100%	-	-

Stem cell

Reticulocyte

expelling

nucleus


Venous sinus

Macrophage

Monocyte

Lymphocyte

Transfer of RBC to Circulation :

Energy metabolism:

- Less energy required
- Utilize Glucose for energy by:
- Anaerobic glycolysis
- Pentose phosphate pathway

Regulation of Erythropoiesis

Factors affecting Erythropoiesis:

- -Tissue Oxygenation
 - Anemia, High Altitudes, heart and lung problems.
 - ERYTHROPOITEN
- -Vitamins
- -Metals
- -Proteins
- -Hormones

-Other factors/Conditions

↓ O₂ delivery to kidneys Kidneys ↑ Erythropoietin secretion ↑ Plasma erythropoietin ↓ ↑ Production of erythrocytes ↑ Blood Hb concentration ↓ ↑ Blood O₂-carrying capacity ↓ Restoration of O₂ delivery

The regulation of RBC production and erythropoietin hormone secretion in response to hypoxia

Team Work 433 - PHT433@gmail.com

Erythropoietin (EPO) :

Glycoprotein, 90% of EPO is produced from peritubular fibroblasts in the renal cortex and 10% from the liver.

Renal failure or Chemotherapy? Low levels of EPO

If someone has Renal failure or he needs Chemotherapy, that mean the EPO level is low.

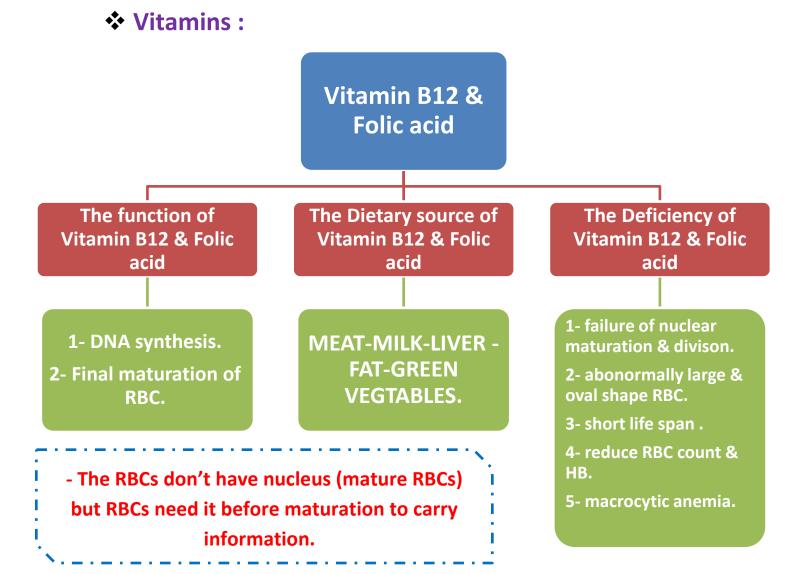
What is Renal failure?

Stimulate the growth of early stem cells, Can be measured in plasma & urine.

High levels of erythropoietin may cause:

- Anemia, hemorrhage
 High altitude
 Heart failure
- Lung Disease

Role of EPO


- EPO stimulates increased cell division rates in erythroblasts and stem cells that produce erythroblasts.
- EPO speeds up the maturation of RBCs by accelerating the rate of Hb synthesis.
- Under maximum EPO stimulation, bone marrow can increase the rate of RBC production tenfold.

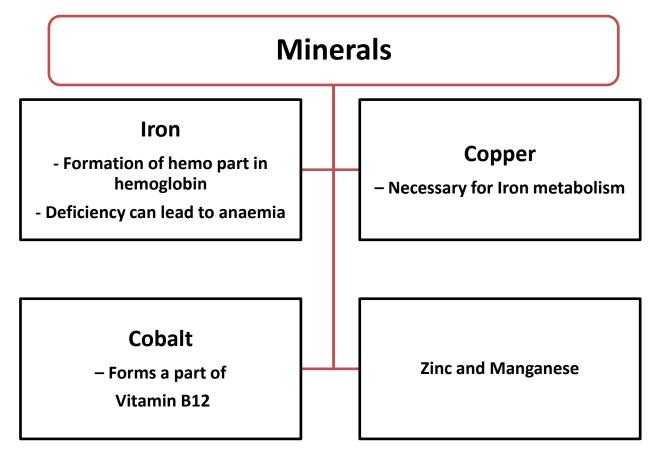
Blood doping?

is the practice of boosting the number of <u>red blood cells</u> in the bloodstream in order to enhance athletic performance

Pernicious Anemia

- 1- VB12 absorption needs intrinsic factor secreted by parietal cells of stomach .
- 2- VB12 + intrinsic factor are absorbed in the terminal lleum.

Causes of deficiencies :


Inadequate intake
Poor absorption due to Intestinal disease

Team Work 433 - PHT433@gmail.com

Intrinsic factor: is a glycoprotein produced by the parietal cells of the stomach. It is necessary for the absorption of vitamin B₁₂ later on in the small intestine.

Minerals :

Iron metabolism (Fe)

Iron is needed for the synthesis of hemoglobin, myoglobin, cytochrome oxidase , peroxidase & catalase

Total Iron in the body = 4-5g

65% - Hemoglobin
4% - In the form of myoglobin
1% - other heme-containg proteins
0.1% - Is combined with transferrin in the bood plasma
15-30% - stored iron in the form of ferritin in the liver, spleen and bone marrow.

Iron absorption

- Iron in food mostly in oxidized form (Ferric ,F+3)
- Better absorbed in reduced form (Ferrous, F+2)
- Iron in stomach is <u>reduced</u> by gastric acid & Vitamin C
- Rate of iron absorption depend on the amount of iron stored

Transport and storage of iron

Iron is transported in the plasma in the form of Transferrin (apotransferrin + iron)

Iron is stored in two forms :

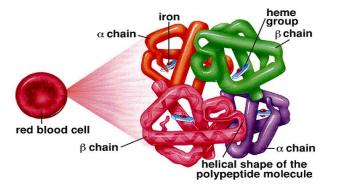
1- Ferritin (apoferritin + iron)

2- Hemosiderin (insoluble complex molecule, in liver, spleen, bone marrow)

Daily loss of iron is 0.6 mg in male & 1.3mg /day in females.

Amino acids and hormones :

 Proteins & Amino acids: formation of globin in hemoglobin


-sever protein deficiency results in anaemia

- Hormones:
- Testosterone
- Growth hormone
- Thyroid hormone
- Cortisol
- Adrenocorticotrophic hormone (ACTH)

Hemoglobin (Hb)

- Each RBC contains 280 million Hb molecules.
- Hb molecules consist 4 chains each formed of heme & polypeptide chain (globin).
- Heme consist of porphyrin ring + iron (F2+).

Types of normal Hb

- Hb A (2 alpha and 2 beta chains) (adult Hb) (98%).
- Hb A2 (2 alpha and 2 delta chains) (2%)
- Hb F (2 alpha and 2 gamma chains) (Hb of intrauterine life).

-Abnormality in the polypeptide chain → abnormal Hb (hemoglobinopathies)
e.g thalassemias, sickle cell (HbS).

Functions of Hemoglobin

1- Carriage of O2

- Hb reversibly binds O2 to form Oxyhemoglobin, affect by pH, temperatre, H+

2- Carriage of CO2

- Hb binds CO2 = Carboxyhemaglobin

3- Buffer "Resistant changing in pH"

Destruction of RBC

□ RBC life span in circulation = 120 days.

Metabolic active cells.

□ Old cell has a fragile cell membrane, cell will rupture as it passes in narrow capillaries (and spleen).

Released Hb is taken up by macrophages in liver, spleen & bone marrow:

- Hb is broken into its component:

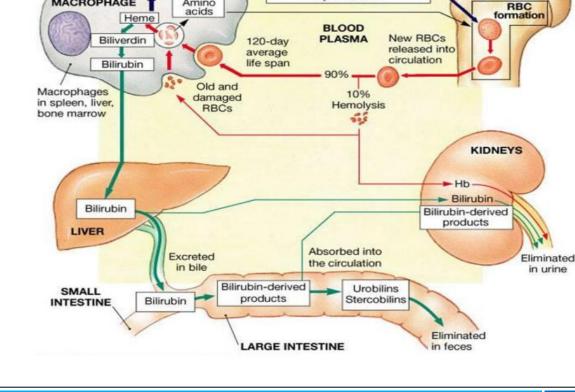
Polypeptide—amino acids (protein pool = storage)

Fe2+

MACROPHAGE

• Iron ---- stored in liver and bone marrow as ferrtin • Heme (Porphyrin)>>-bilirubin>>-secreted by the liver into bile. [excess destruction of RBC ---Jaundice]

Amino



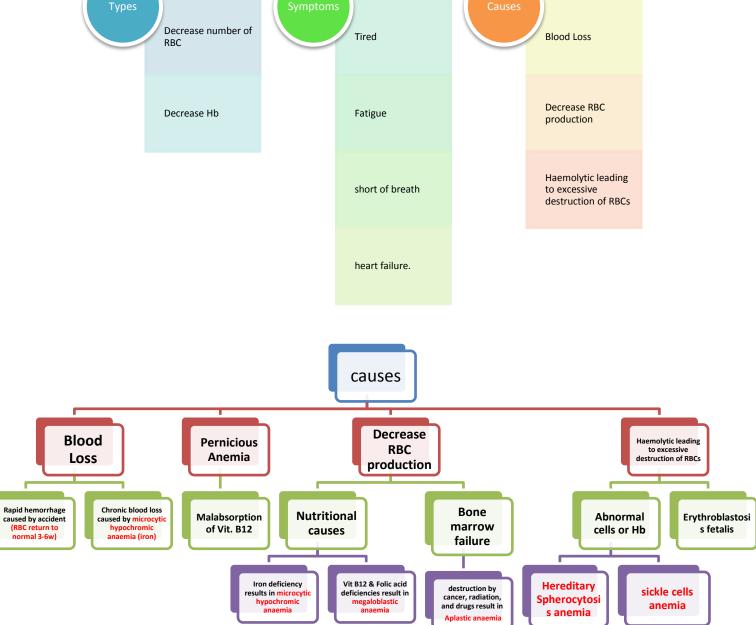
Bilirubin = is the yellow breakdown product of normal heme catabolism

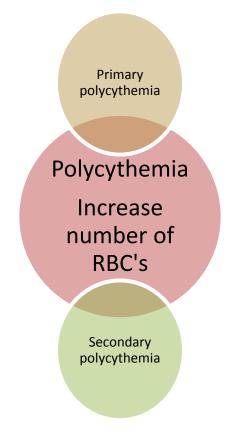
(الصفار أو الصفراء) يأتى الأطفال الحديثي الولادة في الغالب

BONE

MARROW

Fe2+ transported in circulation


by transferrin


Anemia Symptoms Cause

Acute: large amount of blood and intermittent Chronic: small amount of blood and continual Spherocytosis: the cell transform to a spheral shape

Team Work 433 - PHT433@gmail.com

Primary polycythemia (genetic) (Erythremia)

- Uncontrolled RBC production (genetic)
- The RBC count can reach 7-8 millions/ mm3 and the hematocrit may be 60 to 70%

Secondary polycythemia

 secondary to hypoxia caused by high altitude (physiological), chronic respiratory or cardiac disease

Summary:

- Erythropoiesis includes five stages to produce erythrocyte.
- Hemoglobin starts appear in Basophilic erythroblast stage.
- Synthesis of RBC's mainly in Liver at Middle trimester of gestation
- Transfer of RBC's from bone marrow into circulating blood through Diapedesis
- There many essential elements for erythropoiesis such as Vitamin and minerals
- Diseases can take place in RBC's such as Anemia and Polycythemia

Erythropoiesis http://www.youtube.com/watch?v=xpsGsfuffEM

Multiple Choice Questions

Q1: At which of these sites the mainly production of RBC take place in the middle trimester of gestation?

- A- Spleen
- B- Yolk sac
- C- Lymph nodes
- D- Liver

	Answer is : D
Q2: No more RBC's are produced after the age of	
A- 25	
B- 20	
C- 30	
D- 15	
	Answer is : B
Q3: At which of these stages the ejection of nucleus will take place?	
A- Basophilic erythroblast	
B- Polychromatophilic erythroblast	
C- Reticulocyte	
D- Normoblast	
	Answer is : D
Q4: Which of these stages contain nucleoli?	
A- Proerythroblast	
B- Basophilic erythroblast	
C- Reticulocyte	
D- Polychormatophilic erythroblast	
	Answer is : A
Q5: RBC's can pass from bone marrow into the blood circulating through?	
A- Carrier Proteins	
B- Help of enzymes	
C- Diapedesis	
D- Adherence	
	Answer is : C
Q6: Which of the following responsible of increasing of iron metabolism?	
A- Copper	
B- Vitamin C	
C- Folic acid	
D- Cobalt	

Answer is : A

- Q7: Amino acids will form the heme part of hemoglobin. A- True
- B- False
- Q8: Which of the following statement is true?
- A- Iron in food mostly in oxidized form (Ferrous)
 B- Iron in food mostly in reduced form (Ferrous)
 C- Iron in food mostly in oxidized form (Ferric)
 D- Iron in food mostly in reduced form (Ferric)
- Q9: Hemoglobin molecules consist of?
- A- 5 Chains
- **B-2 Chains**
- C-4 Chains
- **D-3 Chains**

Q10: Hemoglobin A consist of?

A- 2 alpha 2 beta B- 2 alpha 2 gamma C- 2 alpha 2 delta D- 2 gamma 2 delta Answer is : C

Answer is : C

Answer is : A

Answer is : B