

Different Heart Sounds				
	51	52	<i>5</i> 3	54
Cause	Sudden closure of AV-vs	Sudden closure of semilunar vs	Rush of bl during rapid	Vibration produced by cont of atrial
C-cycle	Marks beginning of vent systole	Marks beginning of vent diastole (Isovolumetric relaxation)	vent filling → vibration of vent ms.	ms (attributed to vent filling)
- 575.12	(Isovolumetric contraction)		Max vent filling phase of	Atrial systole (just before 1 st HS)
Duration	0.15 sec (Longer)	0.11-0.125 sec (Shorter)	diastole	0.04 sec
Frequency	25-35 Hz	50 Hz	0.05 sec	
	Low pitch (LUB) (Louder)	High pitch (DUB) (Softer, sharper) Splits into 2 sounds during inspiration = Physiological splitting (due to delay closure of pulm v).	Very low pitch	Very low pitch
Character Best	(Louder)		Usually not audible	Usually not audible (Rarely heard)
heard	M & T	A & P	М	M 5

How to Describe Heart Murmurs? Iming (systolic or diastolic) Shape Location Radiation Intensity Pitch Quality

Describing a heart murmur... (Cont.)

3. Location of maximum intensity

Determined by the site where the murmur originates e.g. A, P, T, M listening areas

4. Radiation

Reflects intensity of the murmur & direction of blood flow

19

Intensity: • Graded on a 6 point according to Levine scale: Classification of murmurs by loudness Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Lowest · Low • Loud Medium Medium Loudest intensity intensity intensity intensity intensity intensity Very Quiet but • Loud Moderately Heard with • No faint heard stethoscope loud stethoscope • Thrills immediately needed partly off Thrills the chest • Thrills

I / VI	need quiet room and trained ear to hear.	
	(difficult to hear even by expert listeners)	
II / VI	audible to anyone who listens attentively	
,	(usually audible by all listeners)	
III / VI	loud, but not palpable	
,	(easy to hear even by inexperienced listeners, but without a palpable thrill)	
IV / VI	loud and palpable: it produces a precordial thrill	
V / VI	audible with your stethoscope placed perpendicular to chest wall	
VI / VI	audible without a stethoscope	

21

Describing a heart murmur ... (Cont.)

6. Pitch

High, medium, low

7. Quality

Blowing, harsh, rumbling & musical

8. Others:

i. Variation with respiration

Right sided murmurs change > left sided

- ii. Variation with position of patient
- iii. Variation with special maneuvers

Valsalva \Rightarrow Murmurs ↓ in length & intensity

Systolic Murmurs

Early systolic

Mid Systolic (ejection)

Late systolic

Pansystolic (holosystolic)

SYSTOLIC MURMURS

- Derived from harsh & ↑ turbulence in flow
- Associated with:
 - 1. ↑ flow across normal valve
 - 2. ↑ flow into a dilated great vessel
 - 3. ↑ flow across an abnormal valve, or narrowed ventricular outflow tract e.g. aortic /pulmonary stenosis
 - 4. ↑ flow across an incompetent AV valve e.g. mitral/tricuspid regurgitation
 - 5. ↑ flow across the inter-ventricular septum e.g. VSD

MID-SYSTOLIC (EJECTION) MURMURS

- Most common kind of heart murmur
- Usually crescendo-decrescendo
- ☐ They?be:

1. Innocent

Common in children & young adults

2. Physiological

Can be detected in hyper-dynamic states. e.g. anemia, pregnancy, fever & hyperthyroidism

3. Pathological

Secondary to structural CV abnormalities. e.g. Aortic/pulmonary stenosis, Hypertrophic cardiomyopathy & mitral prolapse

25

IN SUMMARY: COMMON SYSTOLIC MURMURS AND TIMING 1. Aortic stenosis – ejection murmur 2. Pulmonary stenosis – ejection murmur + spilling S2 3. Mitral / Tricuspid regurgitation – holosystolic 4. Mitral valve prolapse – mid-late systole 5. Ventricular septal defect (VSD) – holosystolic S1 S2 S1

PAN-SYSTOLIC (HOLOSYSTOLIC) MURMURS

- Pathological murmur
- Begins immediately with S1 & continues up to S2
- Heard with:
 - Mitral/tricuspid regurgitation
 - Ventricular septal defect (VSD)

20

Mitral Regurgitation

Retrograde flow from LV into LA through an incompetent mitral valve

- > **T** holosystolic murmur
- > L- best heard @ apex, radiates to left axilla
- C- soft, high-pitched, blowing
- A- MV prolapse, MV myxomatous degeneration, MI, rheumatic heart disease, cardiomyopathy, endocarditis

Note: T- Timing; L- Location; C- Character; A- Association

DIASTOLIC MURMURS

- Almost always indicate heart disease
- Two basic types:
 - 1. Early decrescendo diastolic murmurs

Signify regurgitant flow through an incompetent semilunar valve e.g. aortic/pulmonary regurgitation

2. Rumbling diastolic murmurs in mid- or late diastole

Suggest stenosis of an AV valve e.g. mitral/tricuspid stenosis

Continuous Murmurs

- Begin in systole, ? peak near S2 & continue into all or part of diastole
- Heard with:
 - Patent ductus arteriosus (PDA)
 - Ventricular septal defect (VSD)

