

Lecture: 14

Vision, Accommodation, & Pupillary Light Reflex

Done By: Nada Alouda

Reviewed By: Abdullah Al-Hyaimi

At the end of this lecture, student should be able to describe:

- 1. Describe visual acuity.
- 2. Contrast photopic & scotopic vision.
- 3. Know visual pathway & field of vision.
- 4. Describe the process of accommodation reflex & its pathway, contrasting the refraction of light by the lens in near vision & in far vision.
- 5. Identify & describe pupillary light reflex & its pathway & relate these to clinical situations as Argyll Robertson pupil.
- 6. Identify the lateral geniculate body & visual cortex.

Physiology Team 432 CNS Block Lecture: 14

Vision	Accommodation	Pupilary light reflex (light reflex)
Visual acuity: • Definition • Visual threshold • How to measure visual acuity?	 Process of accommodation: At rest (looking at <u>far</u> objects). Looking at <u>near</u> objects. 	Description of pupillary light reflex
Duplicity theory:Photopic vision (cones).Scotopic vision (rods).	Accommodation reflexThe reflexTest used to detect accommodation	Pupillary light reflex pathway
Visual pathway	Near responseNear pointPresbyopia (triad)	Related clinical situations:Atropine drops.Argyll Robertson pupil
Field of vision	Accommodation pathway	
• Lateral geniculate		

• Visual cortex (primary & association areas).

Visual Acuity

 Degree to which details of objects are **perceived**.

 It is the minimal amount of light that elicit sensation of light.

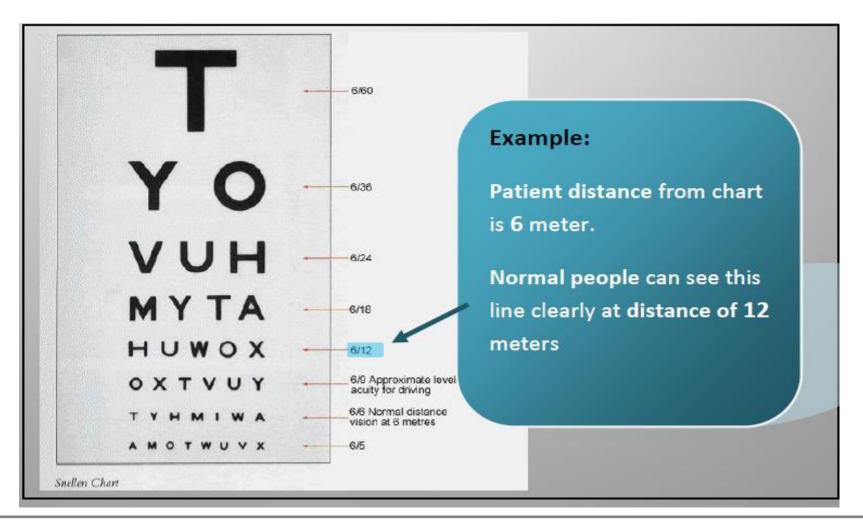
- By using Snellen chart.
- Normal acuity = **d/D** (d → distance of patient / $D \rightarrow distance of$ normal person = 6/6)

Definition

Visual threshold

How to measure visual acuity?

- I.e. a person of 6/12 has less vision than normal vision means that a
- Another example: A person of 12/6 has better vision than normal vision (not hyperopic).



Physiology Team 432

CNS Block

Visual Acuity: Snellen chart

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Duplicity Theory of Vision

<u>Duplicity theory: 2 kinds of vision under different conditions:</u>

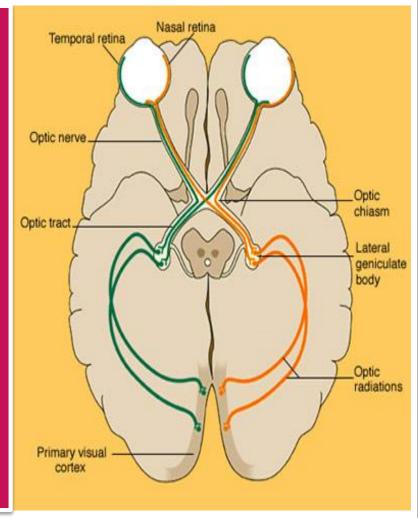
#	1- Photopic vision	2- Scotopic vision
Condition of vision	Bright light vision.	Night vision, dim light vision.
Photoreceptor	Served by cones.	Served by rods.
Visual acuity (high or low)	HIGH visual acuity = colors & details.	LOW visual acuity = NO colors or details.
Visual threshold (sensitivity to light)	LOW sensitivity to light = needs HIGH visual threshold to be stimulated.	GREAT sensitivity to light = needs LOW visual threshold to be stimulated.

Visual Pathway

Light on eye → Retina (cones & rods) → bipolar cells
→ (ganglion cells)

Optic nerve (axons of ganglion cells)

Optic chiasma

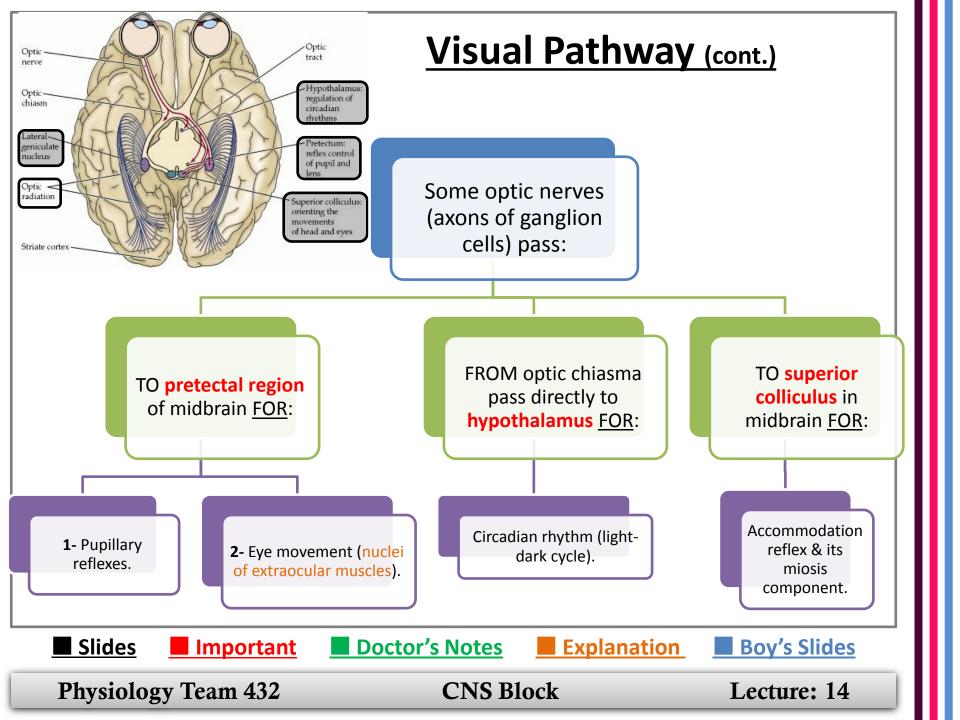

Optic tract

Lateral geniculate body in thalamus

Axons of cells from geniculocalcarine tract

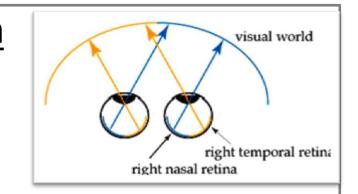
Optic radiation

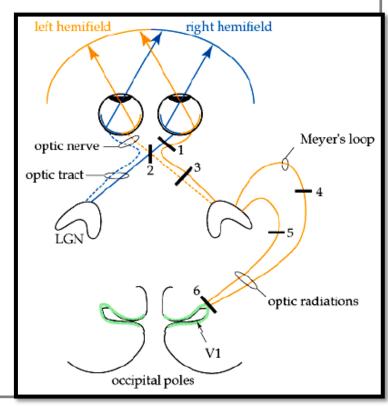
Visual cortex in occipital cortex (Broadmann area 17 on sides of calcarine fissure)



Physiology Team

Field of Vision


- The **nasal fibers** (medial) **cross** to opposite side in optic chiasma.
- The **temporal fibers** (lateral) **do not** cross.
- The **nasal fibers** convey **temporal field** (outer) of vision.
- The **temporal fibers** convey **nasal field** (inner) of vision.


Optic tract:

Slides

- ➤Includes **temporal fibers** of **the same side** i.e. nasal field of same eye (inner) + **nasal fibers** of **the opposite side** i.e. temporal field of other eye (outer).
- The left optic tract (left temporal fibers from left eye + right nasal fibers from right eye) corresponds to the right half of the visual field.
- The right optic tract corresponds to the left half of the visual field.

Important

Physiology Team 432

Doctor's Notes

Explanation

Boy's Slides

CNS Block Lecture: 14

Accommodation

At rest (looking at far objects):

- 1. Ciliary muscles are relaxed.
- 2. Taut (tense) ligaments.
- Flat lens.
- 4. The focus will be on retina.

A. The ciliary muscle relax. B. That will make the ligaments tight C. Ligaments will pull the lense to make it less rounded Light rays from far object are always parallel,

Looking at near objects:

 If ciliary muscles remain relaxed → parallel rays from near objects focus behind retina → blurred vision (NO accommodation).

Solution:

<u>Increase</u> the curvature of the lens & its refractive power by accommodation to bring focus on retina.

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Boy 5 Silues

Accommodation Reflex

Focusing at near objects:

- Contraction of ciliary muscles.
- Relaxation (slacking) of ligaments.
- Increasing anterior surface curvature of lens.
- Ciliary muscles contract \rightarrow ciliary muscles edges come close to each other to increase anterior surface curvature of lens & its refractive power by 12D to bring focus on retina.

Near Object (Accomodation)

Increasing the curvature of the lens is

important to increase the refractive

power and then to make the picture

focused on the retina

- A. Ciliary muscle contracts toward the lens
- B. This will make the ligament relaxed
- The Elastic lens will go back to its rounded shape

Test:

Sanson purkinje image.

Boy's Slides

Physiology Team 432

CNS Block

Accommodation Reflex (cont.)

Near Response (Looking at a near object)

(there are other things that occur along with accommodation when looking at close objects):

- 1. Accommodation **TO** bring focus on retina.
- 2. Convergence of both eyes TO properly focus an image on retina of both eyes in the same point, if not, there will be double vision.
- 3. Pupil constriction (miosis) To protect the eye from extra light & minimize the amount of light entering the eye.

Near Point:

- It's the nearest point to eye at which object can brought into focus on retina by accommodation.
- Near point is near to the eye in young age & becomes farther gradually with age:
- 1. 10 years \rightarrow 9cm.
- 2. At 60 years \rightarrow 80 100cm.

Presbyopia (triad):

- 1. Loss of accommodation.
- 2. Loss of lens elasticity.
- 3. Near point recedes (becomes far).

Correction: by biconvex lens

Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Accommodation Pathway

Light on eye → Retina (cones & rods → bipolar cells → ganglion cells)

Optic nerve (axons of ganglion cells)

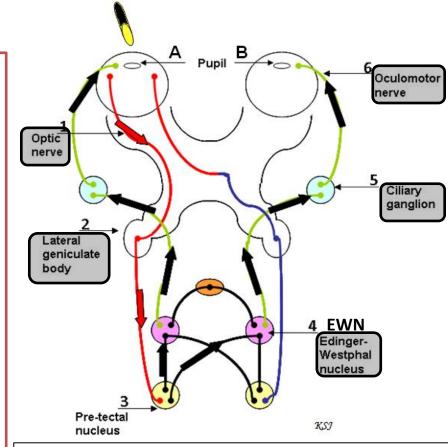
Optic chiasma

Optic tract

Lateral geniculate body in thalamus

AND to superior colliculus in midbrain for

EWN (mother cells of oculomotor nerves)


Ciliary ganglion

 \downarrow

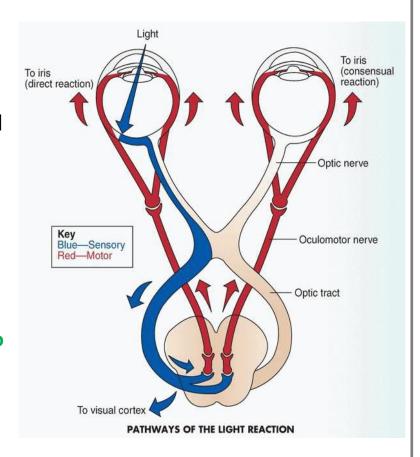
Oculomotor nucleus

 \downarrow

Ciliary body

Oculomotor nerves supply both eyes & responsible for near response:

- 1. Accommodation by ciliary muscles contraction.
- 2. Convergence by extraocular muscles.
- 3. Miosis by muscles of iris.



Pupillary Light Reflex

• Light on ONE eye pupil → constriction of this pupil (DIRECT) & constriction of the other pupil (INDIRECT or consensual pupillary light reflex).

Important:

- The pathway of <u>pupillary light reflex</u> is <u>posterior</u> to accommodation pathway.
- OR in other words, The pathway of accommodation pathway is anterior to pupillary light reflex.

Physiology Team 432

CNS Block

Boy 3 Siluc

Pathway of Consensual Pupillary Light (indirect)

Light on eye → Retina (cones & rods → bipolar cells → ganglion cells)

 \downarrow

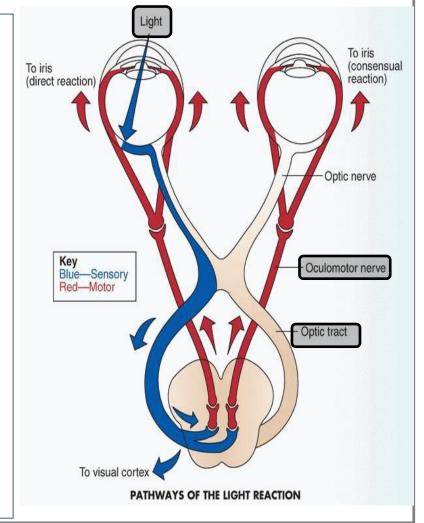
Optic nerve (axons of ganglion cells)

 \downarrow

Optic chiasma

Optic tract

End in pretectal nucleus (posterior to superior colliculus)


Both oculomotor nerve nuclei (EWN)

Supply both eye by oculomotor nerves

Miosis in both eyes (by circular muscles of iris)

Slides

Important

Related Clinical

Situations:

Ciliary Ganglion

Ciliary Ganglion

Edinger-Westphal Nucleus of Third Nerve

Spinal

Cord

Dilation (Sympathetic)

Superior

Cervical

Ganglion

- ☐ Atropine Drops: <u>It blocks pupillary light reflex</u>
- It's used in profundus examination of eye.
- 1. The parasympathetic supply of circular muscles of iris \rightarrow miosis (constriction).
- 2. Block parasympathetic supply of oculomotor \rightarrow mydriasis (dilation).

☐ Argyll Robertson Pupil (ARP):

- 1. In syphilis, tabes dorsalis which destroy pretectal nucleus BUT not superior colliculus.
- 2. Light reflex is lose BUT accommodation reflex remains.

■ Slides

Important

Doctor's Notes

Explanation

Boy's Slides

Physiology Team 432

CNS Block

Lateral Geniculate Body (LGB)

□ Lateral Geniculate Body (6 layers in thalamus):

- 1. Left LGB (similar to left optic tract) has all layers receive from right half of visual field.
- 2. Right LGB (similar to right optic tract) has all layers receive from left half of visual field.

☐ Function of LGB:

- 1. Acts as **relay station** for visual information from optic tract to cortex.
- 2. It has **point to point transmission** (spatial fidelity) = space exactness.
- 3. Acts as **gate controls signal transmission to visual cortex** i.e. control how much signals reach visual cortex.
- 4. Color vision & detect shapes & texture.

Visual Cortex

□ Visual Cortex has 6 layers:

1. Primary visual cortex (Broadmann area 17):

Perceive sensation of vision (movement, shapes, stereoscopic vision {3D}, brightness) & has blobs for color detection.

2. Association visual cortex (area 18 & 19):

Interpretation of visual stimuli.

SURWARY

- SNELLEN CHART is used to measure visual acuity.
- SANSON PURKINJE IMAGE is used to test accommodation reflex.
- PHOTOPIC vision is served by cones while scotopic by rods.
- **ACCOMMODATION REFLEX** depends on ciliary muscles contraction & curvature of lens (refractive power); the stimulus is near object.
- **PUPILLARY LIGHT REFLEX** depends on circular muscles of iris; the stimulus is light toward the pupil.
- Near point becomes farther by aging due to loss of lens elasticity & accommodation leading to presbyopia.
- Pupillary light reflex occurs to both eyes (not only the stimulated eye) due to oculomotor nerve supply to both eyes.
- •HELPFUL VIDEO about Ciliary Muscle Contraction: http://www.youtube.com/watch?v=aQICnM0TiRY

■ Slides ■ Important ■ Doctor's Notes ■ Explanation ■ Boy's Slides

Physiology Team 432 CNS Block Lecture: 14

QUESTIONS

Q1: B

Q2: A Q3: A

Q4: C

Q1: In patient with syphilis, which reflex is lost?

- A) Accommodation reflex.
- B) Pupillary light reflex.
- C) Corneal reflex.

Q2: Which structure is responsible for controlling signal transmission to visual cortex?

- A) Lateral geniculate body.
- B) Association area of visual cortex.
- C) Optic chiasma.

Q3: Which one of the following is the center of visual pathway?

- A) Thalamus.
- B) Hypothalamus.
- C) Superior colliculus in midbrain.

Q4: Which one of the following is responsible for ciliary muscles contraction with miosis?

- A) Thalamus.
- B) Hypothalamus.
- C) Superior colliculus in midbrain.

■ Slides ■ Important ■ Doctor's Notes ■ Explanation ■ Boy's Slides

Physiology Team 432 CNS Block Lecture: 14

If there are any Problems or Suggestions, Feel free to contact:

Physiology Team Leaders

Mohammed Jameel & Shaimaa Al-Refaie

432100187@student.ksu.edu.sa 432200643@student.ksu.edu.sa

