

Lecture 2 JOINTS

> Define the term "Joint "

- > Describe the classification of the 3 types of joints & give an example of each.
- > Describe the characteristics of synovial joints.
- > Describe the classification of synovial joints & give an example of each.
- > List factors maintaining stability of joints.
- > Recite "Hilton's law" for nerve supply of joints.

Color Index:
Main text
Boys' Slides
Girls' Slides
Important
Dr's Notes
Extra

Joint

Definition

-It is the site where two or more bones meet together or union of two or more bones of the body

They are classified according to : **Tissues** that lie between the articulating bones

1) Fibrous Joints: MPORTANT!

The articulating surfaces are joined by fibrous connective tissue, where **No or very mild movement (Negligible).**

For example:

2) Cartilaginous Joints : IMPORTANT!

Happens when two bones are joined by cartilage. They are classified into **2 types :**

> Primary Cartilaginous (Synchonrdosis)

Structure:

The bones are united by a **plate** or a bar of

Secondary Cartilaginous (Midline or symphysis)

Structure:

The bones are united by a **plate** of **fibrocartilage**.

hyaline cartilage.

439 Note: it's one where bone and cartilage meet. It's a very strong joint and immobile.

Movement:

No movement, **temporary** joints (ossify later).

-Examples :

-Between the **Epiphysis** and the Diaphysis of a growing bone (Epiphysial Plate)

-Between the First Rib and the Sternum (1st

sternocostal joint)

- (The rest of the sternocostal joints are synovial plane joints)

Their articulating surfaces are covered by a **thin plate of hyaline cartilage**. Also called Midline joints.

Movement: Little movement, permanent joints.

-Examples :

-Joints between the Vertebral Bodies (intervertebral discs).

-Symphysis Pubis. (between the two hip bones .)

- Between parts of the sternum

3) Synovial Joints: IMPORTANT!

Freely movable Joints. Because of the Synovial Cavity and fluid

The 2 bones (Articulating bones) are joined by a **Fibrous capsule** which is attached to the margins of articular surfaces & enclosing the joint

The articular surfaces are covered by a thin layer of hyaline cartilage (**articular cartilage**).

يتآكل مع التقدم في العمر خصوصا عند النساء :Note444

Characteristic

features

A joint cavity enclosed within the capsule.

Synovial membrane:

a thin vascular membrane lining the inner surface of the capsule.

Synovial fluid :

a lubricating fluid produced by the synovial membrane in the joint cavity.
The fluid minimizes the friction between the articular surfaces.

Classification of Synovial joints:

Synovial joints can be classified according to:

- The **arrangement** (shape) of the articular surfaces.
- The **range of movement** that are possible

	Plane Synovial Joints	Axial synovial joint
Movement	-Gliding movement(Minimal)	-Transverse (x-axis): flexion and extension -Longitudinal (y-axis): rotation -Antero-posterior (z-axis): abduction and adduction
Arrangement	-The articulating surfaces are flat and the bones slide on one another producing a gliding movement.	The articulating surfaces occur along axis.
 Examples Intercarpal & intertarsal joints Sternoclavicular joint Acromioclavicular joint Betweeen the 2nd-7th strenocostals 		- Elbow joint - Shoulder joint - Radio-ulnar joint

Axial joint are divided to:

	Uniaxial		Biaxial		Multiaxial
Type	Hinge	Pivot	Ellipsoid an elliptical convex fits in an elliptical (oval) concave articular surface)	Saddle the articular surfaces are reciprocally concavoconvex.	Ball & socket
Axis	Transverse	longitudinal	Transverse & antero-posterior	They resemble a saddle on a horse's back	A ball—shaped head of a bone fits into a socket-like concavity of another
Movement	Flexion & extension	Rotation	1.Flexion & extension. 2.Abduction & adduction. BUT rotation is impossible.	1.Flexion & extension. 2.Abduction & adduction. Small range of rotation	1.Flexion & extension. 2.Abduction & adduction. rotation along separate axis
Examples	1.Elbow joint 2.Ankle joint	1.Radio-ulnar joint(supination & pronation) 2.Atlantoaxial joint	Wrist joints	Carpometacarpal joint of the thumb	1.Shoulder joint 2.Hip joint
Pictures	Humerus Trochlea Trochlear Notch (b) Hinge joint between trochlea of humerus and trochlear notch of ulna at the elbow	Head of radius Annular ligament Radius Radius (c) Pivot joint between head of radius and radial notch of ulna	Radius Scaphoid Lunate Una Lunate Condyloid joint between radius and scaphoid and lunate bones of the carpus (wrist)	Radius Una Trapezium Una Metacarpal of thumb Una of thumb Una Staddle joint between trapezium of carpus (wrist) and metacarpal of thumb	Acetabulum of hip bone Head of femur (1) Ball-and-socket joint between head of the femur and acetabulum of the hip bone

1. The shape of articular surfaces:

The ball and socket shape of the Hip joint is a good examples of the importance of the shape of the bone to maintain joint stability.

The shape of the bones forming the Knee joint has nothing to do for stability.

2. Strength of the ligaments:

Ligaments prevent excessive movement in a joint.

e.g. Cruciate ligaments of the knee joint.

Factors Affecting Stability of Synovial

Joints

3. Tone of the surrounding muscles:

In most joints, it is the major factor controlling stability.

e.g. The short muscles around the shoulder joint (Rotator cuff muscles) keeps the head of the humerus in the shallow glenoid cavity.

1. The shape of articular surfaces: **2.** Strength of the ligaments:

3. Tone of the surrounding muscles:

NERVE SUPPLY OF JOINTS

The capsule and ligaments receive an abundant sensory nerve supply.

Hilton's Law:

"A sensory nerve supplying a joint also supplies the muscles moving that joint and the skin overlying the insertions of these muscles."

Applied Anatomy

-Many of these functional aspects of joints may be assessed by radiology.

-Displacement of the articulating surfaces of a joint is known as dislocation.

-Partial displacement of the articulating surfaces is known as subluxation.

-Dislocation of a joint may follow severe injury and is always

associated with damage to the capsular and accessory ligaments.There may also be fractures of the bony structures of the joint, and occasionally damage to closely related nerves and vessels.

-Chronic inflammatory processes are prone to affect the bone ends (osteoarthritis) and synovial membrane (rheumatoid arthritis), and joints thus affected may be deformed and painful, with marked limitation of movement.

Thanks to Razan Alnufaie !!

MCQS

Which	one of the following	ı joints is a hinge syn	ovial ?
A) Shoulder joint	B) Elbow Joint	C) Wrist Joint	D) Intercarpal

2	Which one of th	ne following joints re	presents the primary	y cartilaginous ?
	A) Gomphosis	B) 7th sternocostal	C) Intervertebral disc	D) Epiphyseal plate

Gomphosis	is an example of wh	nich one of the follow	ving joints ?
A) Cartilaginous	B) Fibrous	D) Plane synovial	D) Pivot synovial

in most	t joints, it's the major	factor controlling st	ability
A)The shape of the articular surfaces	B) Tone of the surrounding muscles	C) Strength of the ligaments	D) Atmospheric pressure

MCQS

According to Hilton's law "A sensory nerve supplying a joint also supplies..." relating to that joint ?

Which type of uniaxial synovial joints can do supination & pronation of the

forearm ?	
-----------	--

A) Hinge	B) Pivot	D) Ellipsoid	C) Saddle
----------	----------	--------------	-----------

Secondary cartilaginous joints are united by ?

A) Elastic cartilage	B) fib
----------------------	--------

	the s	ite where two or mo	re bones meet toget	her ?
	A) Cartilage	B) Joint	D) Tendon	D) None of the following
Sternoclavicular joint is a plane synovial joint take place between the ?				
	A) Sternum and the clavicle	B) 2nd rip and 3rd rip	C) Ulna and the humerus	D) Ulna and the radius

SAQS

List the 3 type of joint

PI-Cartilaginous 2-Fibrous 3- Synovial:

The joint cavity contain the _____ which is secreted from the _____.

Synovial fluid - synovial membrane.

LECTURE DONE BY

Roaa Alhajeri Abdulaziz Alobathani

Nisreen Alotaibi Abdulaziz Alanazi Ritaj Alsubaie Saad Aldosari Shaden Alotaibi

