
Fracture and bone healing

Color index: Main text (black) Important (Red) Dr.Notes (green) Male slides only (blue) Female slides only (pink) Extra info(gray)

Editing File

Objectives

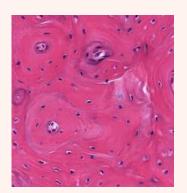
Know basic anatomy and histology

Understand the mechanism and stages of fracture healing process

Know the factors affecting healing process and the possible complications of healing process

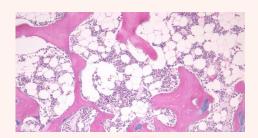
Appreciate the importance of road traffic accidents as a major cause of disability in Saudi Arabia

Know the different types of fractures

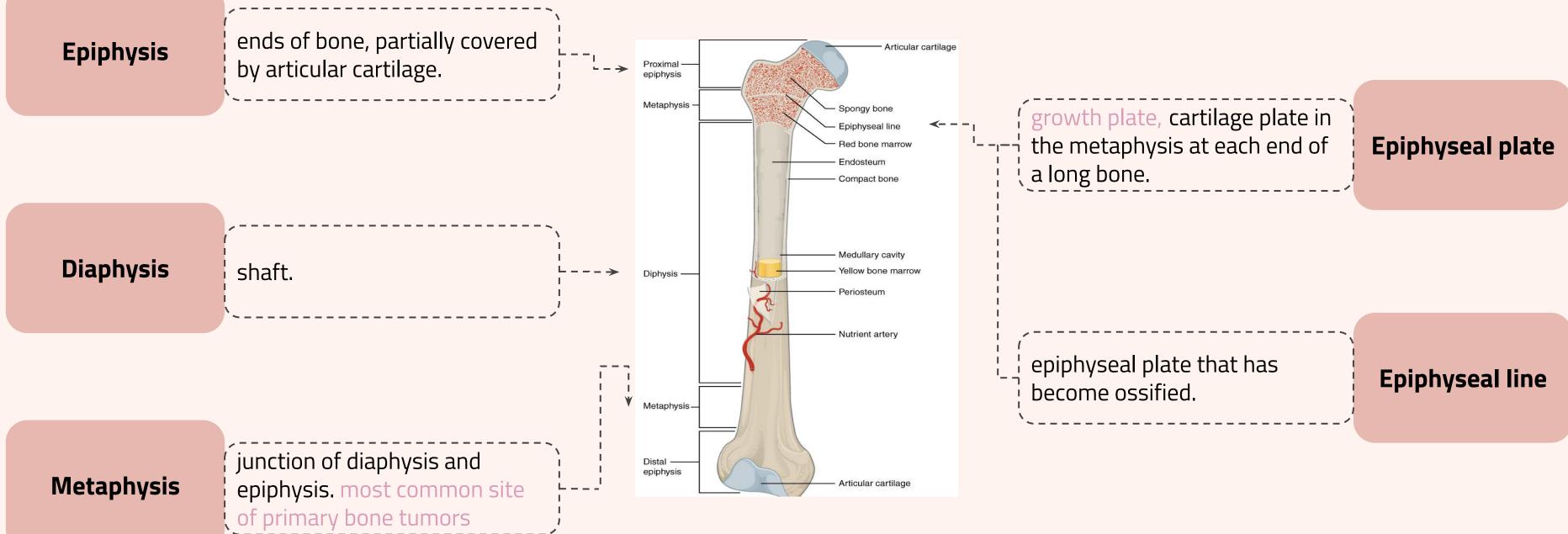


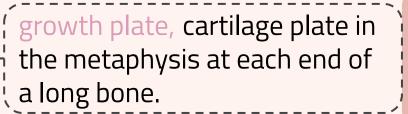
Basic anatomy

There are two types of mature bone:

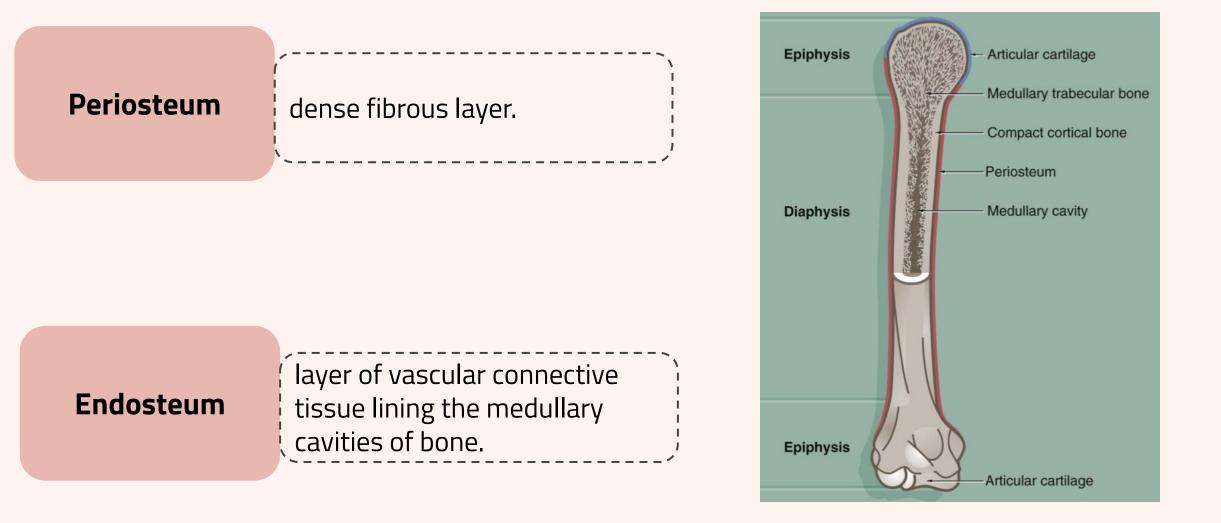

Cortical

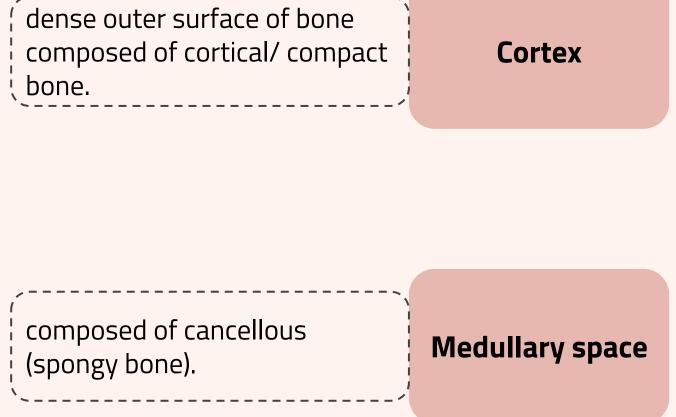
- Structural load-bearing function
- Thick and dense
- This is the area of bone to which ligaments and tendons attach
- Present in diaphyses (shafts) of long bones such as the femur and the outer surfaces of predominantly trabecular bones such as the vertebral bodies


- Some structural function
- Contributes to the metabolic functions of bone far more than cortical bone
- More prone to diseases involving or resulting from increased bone remodelling than cortical bone (osteoporosis)


Trabecular (cancellous bone)

Normal Anatomy


Parts of a long bones:



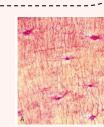
Normal Anatomy cont.

Cross section:

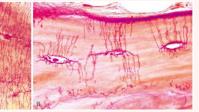
Types of Bone Cells

Osteoblasts

- Located on the surface of the matrix
- Synthesize, transport and assemble the matrix and regulate its mineralization
- Over time, may become inactive and remain on the surface of trabecula.
- Or they may become embedded within the matrix (osteocytes).


Osteocytes

- Located within matrix
- Interconnected by an intricate network of dendritic cytoplasmic processes through tunnels known as canaliculi
- Osteocytes help to control calcium and phosphate levels in the microenvironment, and mechanotransduction.



Osteoclasts

Located on the surface of the matrix

 Specialized multinucleated macrophages derived from circulating monocytes that are responsible for bone resorption.

 Attach to bone matrix and create a sealed extracellular trench (resorption pit).

Matrix

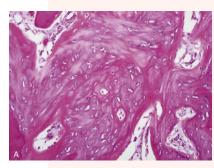
- Bone matrix is the extracellular component of bone
- It is composed of an organic component known as osteoid (35%) and a mineral component (65%)
- Osteoid is made up of predominantly type I collagen with smaller amounts of glycosaminoglycans and other proteins
- Mineral component is composed of mainly inorganic moiety hydroxyapatite [Ca10(PO4)6(OH)2]
- Serves as a repository for 99% of the body's calcium and 85% of its phosphorus
- **Bone:** mineralized osteoid; either lamellar bone or woven bone

- Main type in adult
- Iayered bone with concentric parallel lamellae
- gradually replaces woven bone
- normal type of bone found in adult skeleton

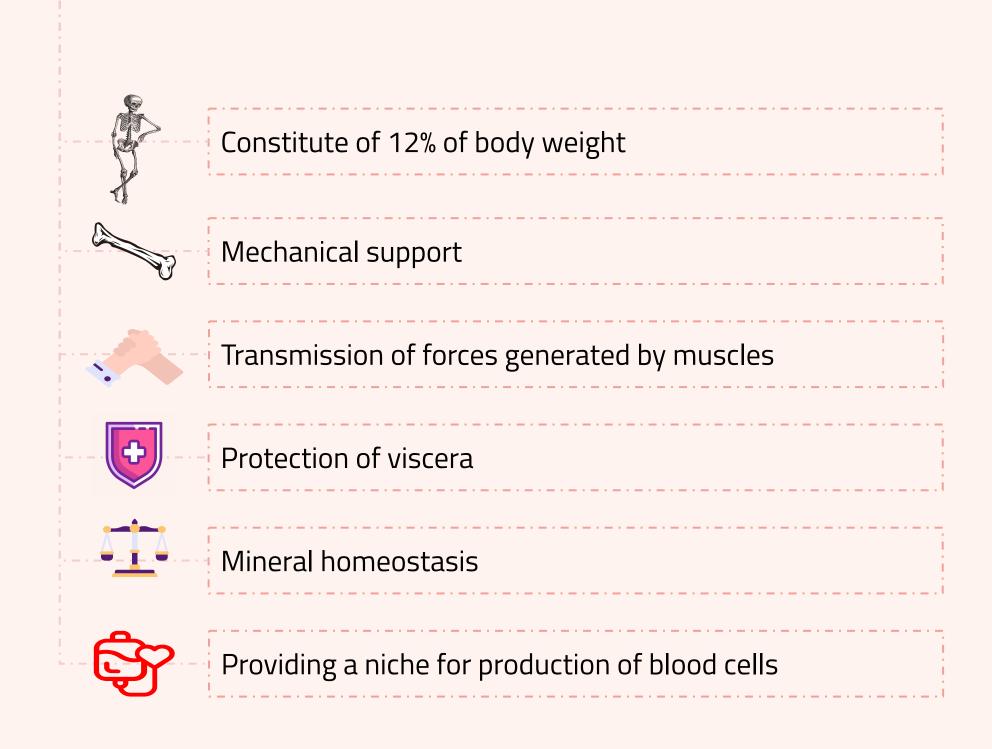
- settings.

Types of Matrix

Lamellar


• Characterized by an orderly arrangement of collagen bundles and their cells

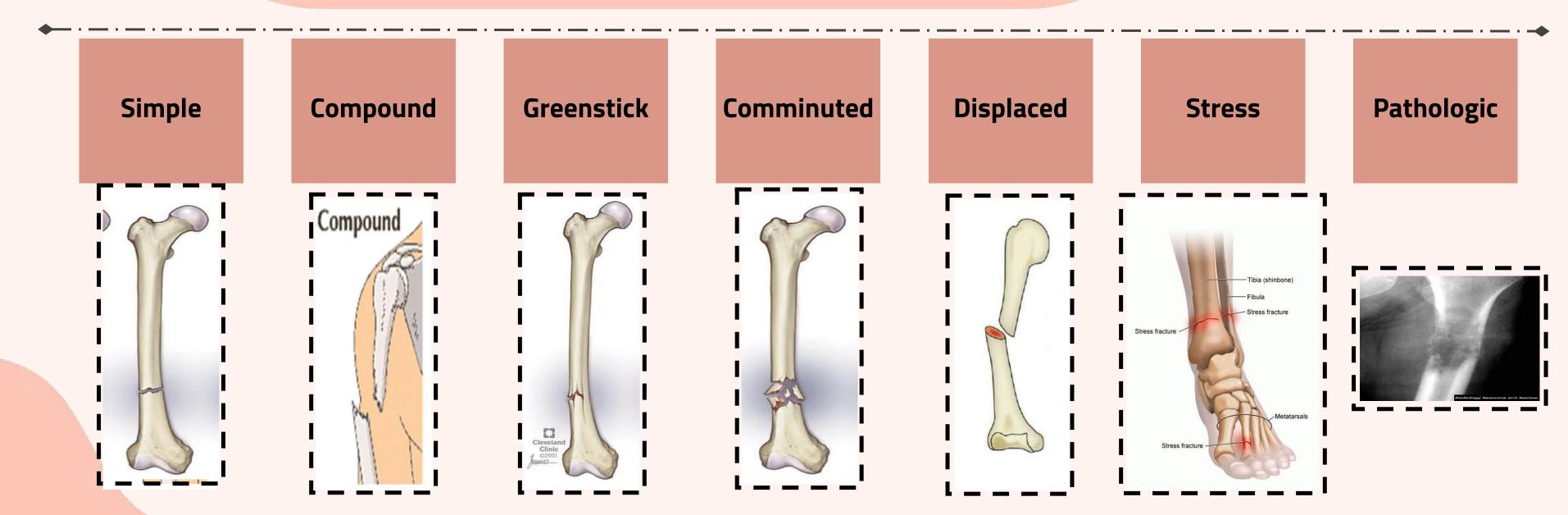
stronger than woven bon


Woven

 Produced rapidly, such as during fetal development or fracture repair, but the haphazard arrangement of collagen fibers imparts less structural integrity.

• In an adult, the presence of woven bone is always abnormal, but it is not specific for any particular bone disease since it can be found in a variety of pathologic

Function of Bones



Special Thx to 443

Definition & Classificatio Fractures

Fractures

Defined as loss of bone integrity due to mechanical injury and/or diminished bone strength Break in the continuity of bone due to mechanical injury and/or diminished bone strength

on of	a way that might help u memorize it
	SCCD GPS
	Simple
	C ompund
	C omminuted
	Displaced
	Greenstick
	P athologic
	S tress
minished	''

Type of Fractures

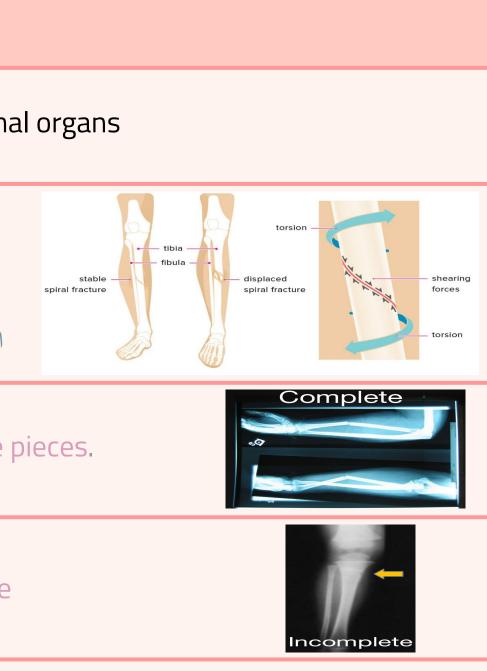
Туре	Definition
Closed (Simple)	The overlying skin is intact. Does NOT communicate with external environment
Open (Compound)	The bone communicates with the skin surface (infection) العظمة طلعت برة الجلد مع جرح فيصاحبها مرض (Infection)
Greenstick	Extending only partially through the bone, common ir وصارت قطعتين مثل الـsimple مثل ماهو موضح بالصورة
Comminuted	The bone is fragmented (segments) A bone that is broken in at least two places. Comminuted like car accidents. "مهشم و يكون على شكل قِطَعْ
Displaced	The ends of the bone at the fracture site are not alig
Stress	Slowly developing fracture that follows a period of ir bone is subjected to repetitive loads(لعلمة على العظمة)
Pathologic	Involving bone weakened by an underlying disease p

" غير مهشم وما اخترق الجلد" .

ction)

in infants when bones are soft العظمة انكسرت جزئيا بس ما انفصلت عن بعض و

d fractures are caused by severe traumas


" نهايات الكسر بعيدة عن بعض " gned

increased physical activity in which the (يجي نتيجة الضغط لفتر ات

process, such as a tumor

Type of Fractures cont.

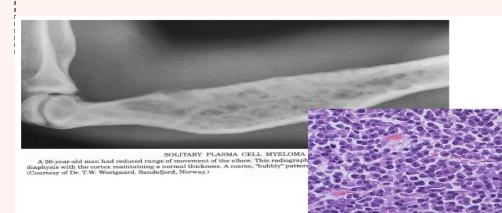
Туре	Definition
Complicated	Associated with damage to nerves, vessels or internal I think it's pretty clear
Spiral fracture- Twisting force	They happen when one of your bones is broken with a twisting motion. They create a fracture line that wraps around your bone and looks like a corkscrew آلكسر على شكل لولبي آي
Complete	A complete fracture breaks the bone into separate
Incomplete	Incomplete fracture is a partial fracture in the bone

Causes of Fractures

Trauma

 Healthy bones are extremely resilient and can withstand strong impacts.

 Examples: Sporting injuries, vehicle accidents and falls.


 Road accident are the second leading cause of death and main cause of premature death in KSA.

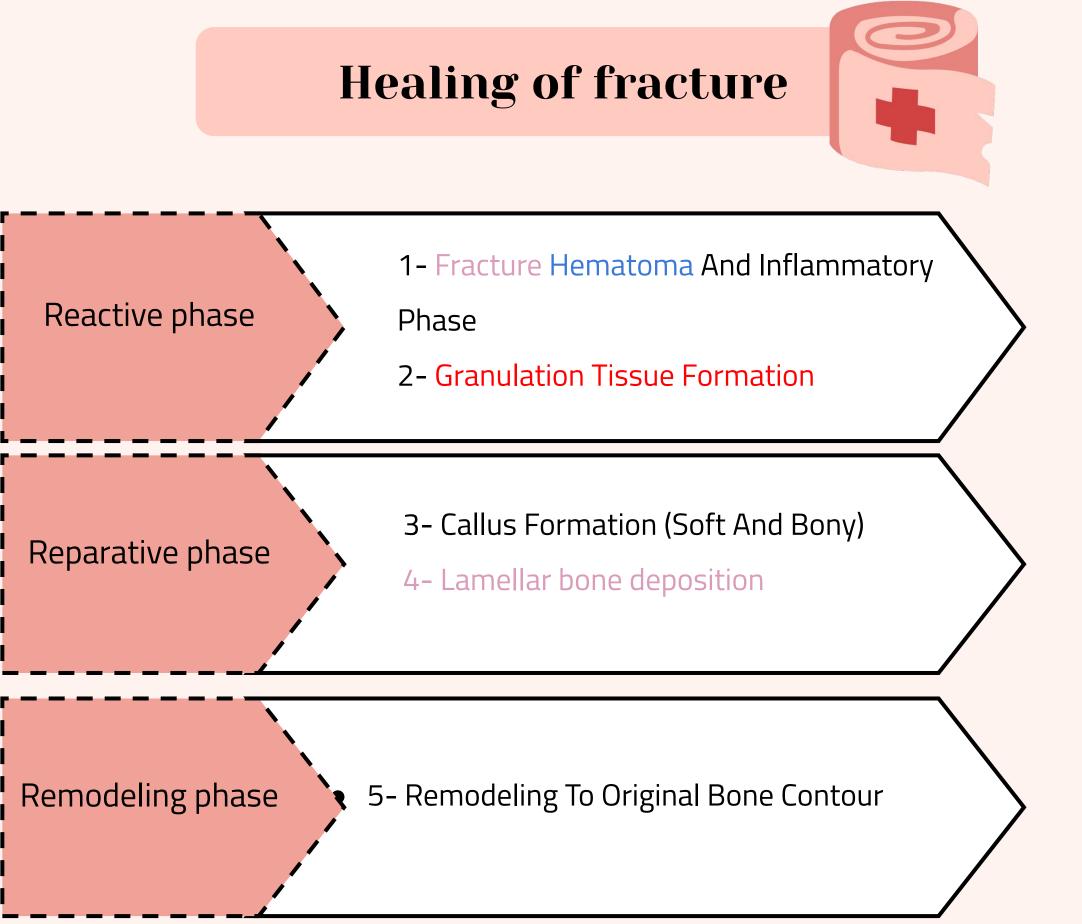
سوقوا زين 🧯

Death rate in 2016 estimated to be28.8 per 100,000 population.

Pathologic

- Minimal trauma.
- The underlying bone is abnormal **e.g**:
- Osteoporosis (هشاشة العظام)
- Osteomalacia (تليّن العظام يعني تصير ليّنة)
- Paget's disease of bone
- Tumor (primary or metastasis)
- Congenital bone diseases (e.g.
 Osteogenesis Imperfecta).

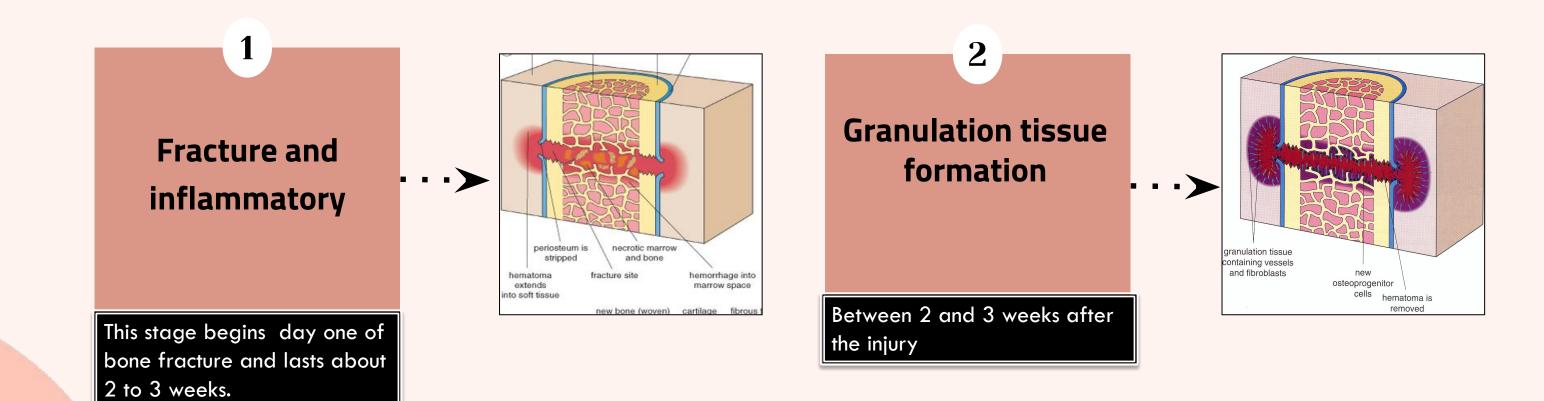
Stress


Slowly over time.

 Collection of microfractures associated with increased physical activity (new repetitive mechanical loads on bone).

 Most common in the weight-bearing bones of the lower leg and foot.

 Athletes and military recruits who carry heavy packs over long distances are particularly susceptible


Bleeding causes swelling due to inflammation induced by chemical mediators produced from macrophages and other inflammatory cells with granulation tissue formation.

1)Hematoma And Inflammatory Phase:

Due to tearing of blood vessels in the medullary cavity, cortex and periosteum, a hematoma forms at the site (تجمع دم ويتخثر جوا الكسر عند الأوعية الدموية وحولينها بشوي في منطقة النزيف بسبب الكسر): of fracture hematoma Inflammation Bleeding from the fractured bone and surrounding tissue causes the fractured area to swell due to inflammation induced by chemical mediator produced from macrophages and other inflammatory cells

2)Granulation tissue formation

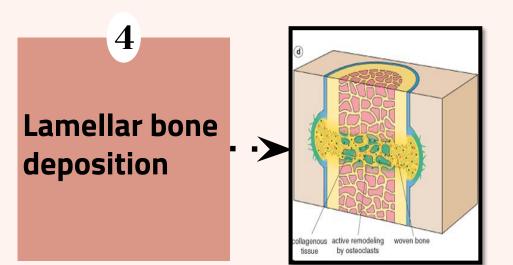
Organization of the hematoma is associated with the migration of neutrophils and macrophages into the fracture hematoma; these cells phagocytose the hematoma and necrotic debris.

•Degranulated platelets and migrating inflammatory cells release PDGF, TGF-β, FGF, and other factors, activate osteoprogenitor cells in the periosteum, medullary cavity, and surrounding soft tissues and stimulate chondroblastic and osteoblastic activity

•Cytokines activate bone progenitor cells, and within a week, the involved tissue is primed for new matrix synthesis.

•Chondroblasts and osteoblasts derived from osteoprogenitor cells migrate into the granulation tissue, which proceed to deposition of cartilage with endochondral ossification and then deposition of bone osteoid in a haphazard way, producing a woven bone pattern. Forming soft callus.

Reparative Phase


Healing of fracture

1:soft callus/procallus

Between 2 and 3 weeks after the injury, the pain and swelling will decrease. At this point, the site of the fracture stiffens and new bone begins to form. The new bone cannot be seen on x-rays. This stage usually lasts until 4 to 8 weeks after the injury.

This soft callus can hold the ends of the fractured bone in apposition but is noncalcified and cannot support weight bearing (end of first week).

after 2 weeks ...

Robbins pathology reference page 805-806

2: HARD (BONY) CALLUS (the cast can be removed)

Between 4 and 8 weeks, the new bone begins to bridge the fracture. This bony bridge can be seen on X-rays. By 8 to 12 weeks after the injury, new bone has filled the fracture.

- Activated osteoprogenitor cells deposit woven bone. fracture site .
- surrounding.

the fracture line also differentiate into chondrocytes that make fibrocartilage and hyaline cartilage.

- bone is formed

With time, remodeling creates new lamellar trabecular bone, which is oriented in a direction determined by the stresses to which the bone is exposed with mobilization

special thanks to team 443

Osteoblasts arise from pluripotent progenitor cells in the periosteum and granulation tissue. They produce woven bone, resulting in a bony callus that stabilizes the

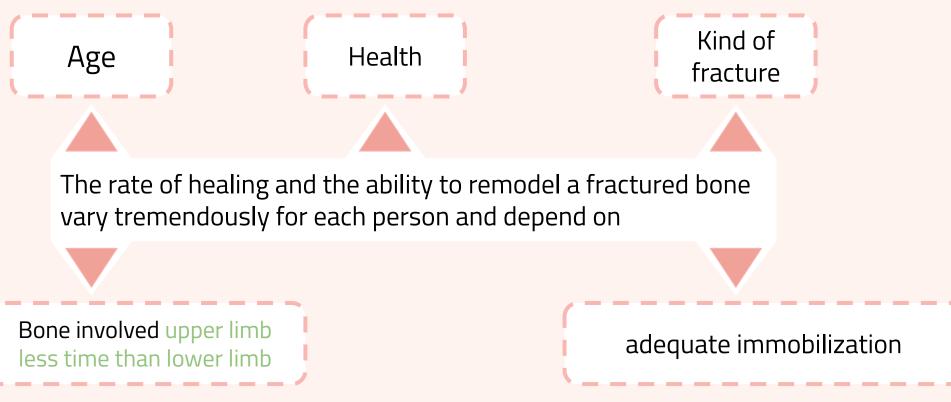
• In some cases, the activated mesenchymal cells in the soft tissues and bone

In uncomplicated fractures, this early repair process peaks within 2 to 3 weeks. The newly formed cartilage acts as a nidus for endochondral ossification, recapitulating the process of bone formation in epiphyseal growth plates • This connects the cortices and trabeculae in the juxtaposed bones • With ossification, the fractured ends are bridged by a bony callus and then lamellar

Remodeling Phase

Excellent Reduction with Well Molded Cast

Immobilization promotes bone fracture healing



External and internal fixation

Beginning about 8 to 12 weeks after the injury, the fracture site remodels itself, correcting any deformities that may remain as a result of the injury. •This final stage of fracture healing can last up to several years. • Although excess fibrous tissue, cartilage, and bone are produced in the early callus, subsequent weight bearing leads to remodeling of the callus, lamellar bone and restoration of medullary cavity.

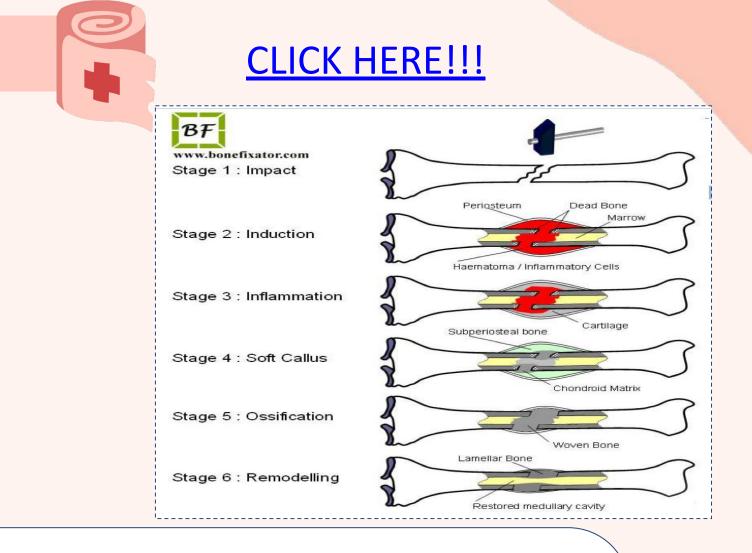
1

2

3

Healing of fracture

- 1. Hematoma and inflammatory phase :
- due to tearing of blood vessels in the cortex hematoma is formed to prevent blood loss.
- Inflammatory cell influx to the hematoma .
- 1. Granulation tissue formation


Reparative Phase

Callus formation: 3.

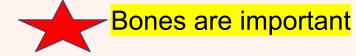
- Inflammatory cells release PDGF, TGF-β, FGF and other factors, activate osteoprogenitor cells and within a week, the involved tissue is primed for new matrix synthesis.
- This soft callus/procallus apposition but can hold the ends of the fractured bone in noncalcified (end of first week).
- After 2 weeks Hard callus formed.
- Activated osteoprogenitor cells deposit woven bone, activated mesenchymal cells differentiate into chondrocytes that make fibrocartilage and hyaline cartilage.
- With ossification, the fractured ends are bridged by a bony callus :
- 4. Lamellar bone deposition:
- With time, remodeling creates new lamellar trabecular bone

Remodelling Phase

After 8 to 12 Weeks The fracture site remodels itself, correcting any deformities that may remain as a result of the injury (final stages can last for years)

Factors disrupting healing process

Displaced and comminuted fractures


Infection

Inadequate minerals and vitamins

Inadequate immobilization (Nutritional): movement of the callus and prevents its normal maturation, resulting in delayed union or Nonunion

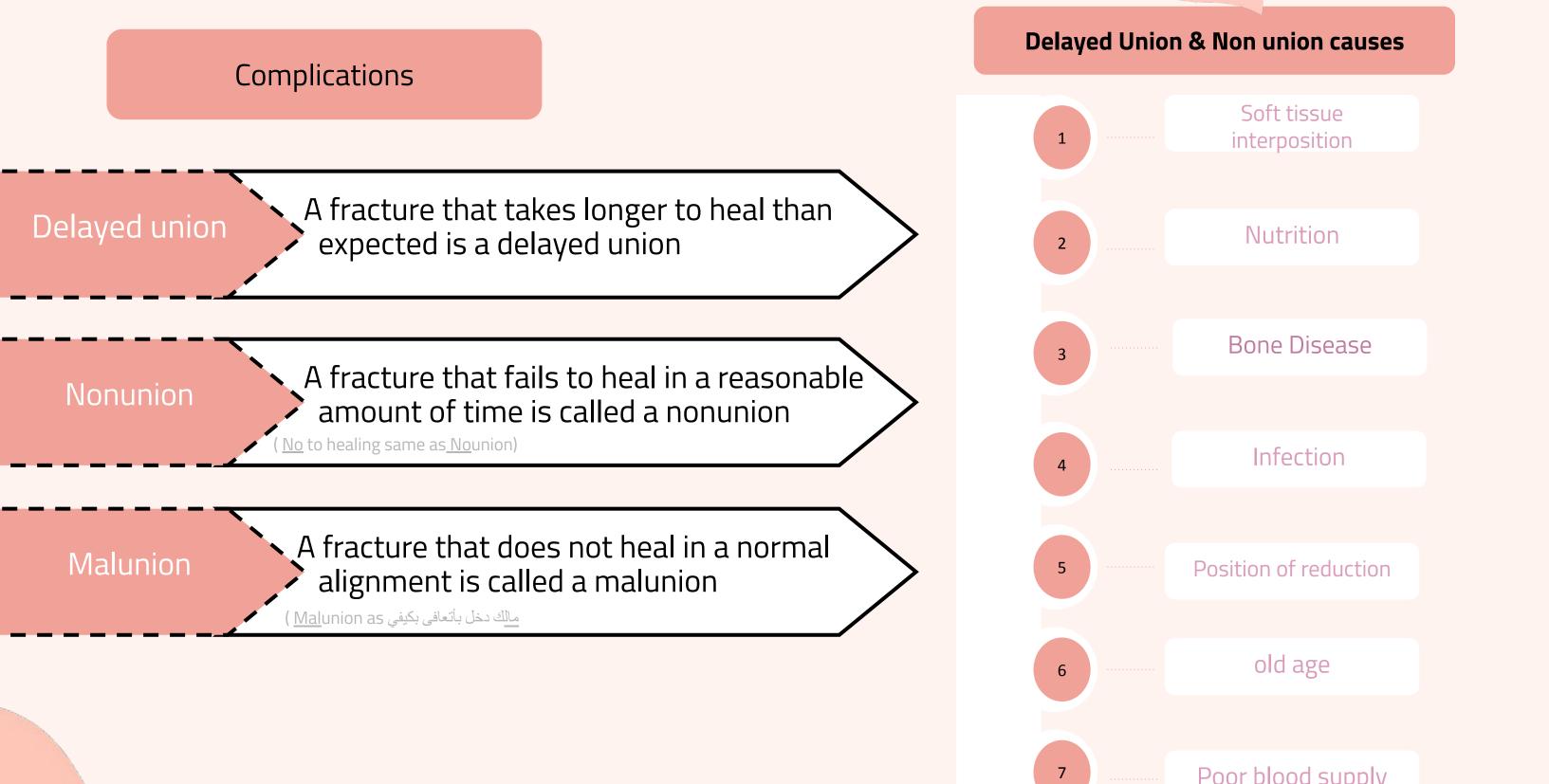
Vascular insufficiency:

This is particularly important in certain areas such as the scaphoid bone in the wrist and the neck of the femur, both of which can be associated with vascular necrosis of fracture fragments.

Upper limb

Lower limb

heal? Answer: 2 months Number of weeks in table isn't needed


Time Factor- Perkin's formula

Union	Consolidation
Spiral —> 3 week	Spiral —> 6 week
Transverse —> 6	Transverse —-> 12
week	week
Spiral —> 6 week	Spiral —> 12 week
Transverse —-> 12	Transverse —-> 24
week	week

Children need half the time to heal compared to adults

Ex: adult needed 4 months to heal how much time needed for a child to

Poor blood supply

Other complications

Neurovascular injury

Osteonecrosis (vascular necrosis)

Infection: Open fractures can become infected

Post-traumatic arthritis: Fractures that extend into the joints (intra-articular fractures) or fractures that cause the bones to meet at an abnormal angle in the joint can cause premature arthritis of a joint.

Growth abnormalities: A fracture in the open physis, or growth plate, in a child, can cause many problems)

- e.g premature partial or complete closure of the physis. This means that one side of a bone or the whole bone stops growing before it naturally would

Compartment syndrome:

-Severe swelling after a fracture can put so much pressure on the blood vessels that not enough blood can get to the muscles around the fracture.

-The decreased blood supply can cause the

muscles around the fracture to die, which can lead to long-term disability.

-Compartment syndrome usually occurs only after a severe injury.

DEFINITION

Osteonecrosis (vascular necrosis):

-Infarction (ischemic necrosis) of bone and marrow cells, peak 30-50 years -10% of hip replacement due to osteonecrosis.

Causes:

- Vascular injury (trauma, vasculitis)
- Drugs (corticosteroids)
- Systemic disease (sickle cell disease)
- Radiation
- Unknown (25%)

Mechanism:

- Mechanical disruption of vessel
- Thrombotic occlusion
- Extravascular compression

 Medullary infarcts, are geographic and involve the trabecular bone and marrow

 Cortex not affected due to Collateral blood flow • In subchondral infarcts, a triangular or wedge-shaped segment of tissue that has the subchondral bone plate as its base undergoes necrosis

- Overlying cartilage is viable.. Synovial fluid
- Can lead to secondary osteoarthritis

Word (disease)	The word that leads to the disease (symptoms, features or a word)	Word (disease)
Simple fracture	Overlying Skin is intact	Delayed union
Compound fracture	Bone is in contact with skin with bleeding and causes infection	Nounion
Greenstick fracture	Partial fracture not fully	Malunion
Comminuted fracture	Bone is fragmented (segments)	Osteonecrosis
Displaced fracture	Bone ends away from each other	
Stress fracture	Fracture after period of time from physical activity	
Pathologic	Fracture by disease	

The word that leads to the disease (symptoms, features or a word)

Long time to heal

The bone fails to heal

abnormal heal of bone

Infarction cause of: Vascular injury, radiation, sickle cell disease,unknown 🥷

Resources to understand better

CLICK HERE!!!

Small gift for u from batch leader •••

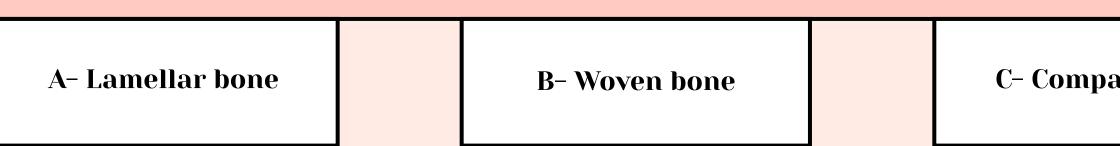
Anki Flashcards

CLICK HERE!!!

Special thx to Abdulaziz Alanazi 🐐

Q1/ The second stage of Fracture healing is where active ph	agoo
necrosis?	

			_			
A- Ossification		B- Hematoma		C- Granulat		
	Q	2/ A type of fracture	where t	he bone is f		
A- Greenstick		B- Complete		C- Comm		
Q3/ The first step of fracture healing						
A- soft callus formation		B- remodeling		C- hard callus		


cytosis absorbs the products of local **D- Callus Formation** tion tissue fragmented? minuted **D- Stress** ing is? **D- hematoma formation** s formation 1/C 5/C 3/D

MCQs

Q4/ Which of the following is not a cause of bone fracture?								
	B- Trauma		C- Stress		D– Burns			
fracti	fracture has only one side damaged and only occurs in children?							
	B- greenstick		C- Comminuted		B & C			
deposit the osteoid collagen in Haphazard pattern and random arrangement?								
	B- Woven bone		C- Compact bone		D- Trabecular			
					t/D 2/B 6/B			

Q4/ Which of the following is not a cause of bone fracture?							
A- Pathologic		B- Trauma		C- Stress		D– Burns	
Q5	Q5/ fracture has only one side damaged and only occurs in children?						
A- Simple		B- greenstick		C- Comminuted		B & C	
Q6/ Osteoblast deposit the osteoid collagen in Haphazard pattern and random arrangement?							
A- Lamellar bone		B- Woven bone		C- Compact bone		D- Trabecular	
						4/D 2/B 6/B	

Q4/ Which of the following is not a cause of bone fracture?						
A- Pathologic		B- Trauma		C- Stress		D– Burns
Q5/ fracture has only one side damaged and only occurs in children?						
A- Simple		B- greenstick		C- Comminuted		B & C
Q6/ Osteoblast deposit the osteoid collagen in Haphazard pattern and random arrangement?						
A- Lamellar bone		B- Woven bone		C- Compact bone		D- Trabecular
						t/D 2/B 6/B

Pathology Team

leaders:

Layal alkhalifah

Ghida Alkahtani

Aram Alzahrani

Sahar Alfallaj

Norah Alnoshan

Raseel Aldajany

Abdulaziz Nasser

Abdulaziz Alanazi

Waleed Alanazi

Faisal alghamdi

Faisal Alamoud

