

-Main Text -Important -Notes -Boy Slides -Girl Slides -Extra

Ty to Hasan Alsugahyir for sketch (445 inshallah) <3

Objectives

01

Define nerve conduction study (NCS) and electromyography (EMG).

02

Define the normal conduction velocity in upper limb and lower limb nerves.

Define the motor unit potentials (MUPs) and how they are changed in muscle and nerve diseases.

Nerve conduction studies

• A **nerve conduction study (NCS):** is a test commonly used to evaluate the function, especially the ability of electrical conduction, of the motor and sensory nerves of the human body.

• Standard nerve conduction studies typically <u>include</u>: 1-motor nerve conduction 2-sensory nerve conduction.

Sensory and motor nerve conduction studies involve analysis of specific <u>parameters</u>, including:
1-latency
2-conduction velocity

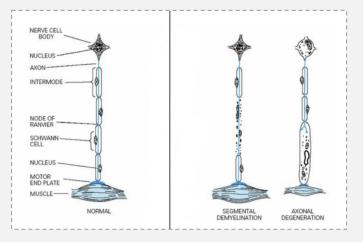
3-amplitude.

Nerve conduction velocity (NCV): is a common measurement made during this test. (443: the most important parameter)

439:

NCS: اختبار يقيس قدرة توصيل الكهرباء للأعصاب (sensory+motor) NCV: هو القياس الشائع لهذا الاختبار (سرعة التوصيل)

Nerve conduction study and EMG


Motor Nerve Conduction Velocity

- Motor nerve conduction velocity of peripheral nerves may be closely correlated to their functional integrity or to their structural abnormalities.
- + <u>Two types of peripheral nerve lesions</u> based on the nature of conduction abnormalities:

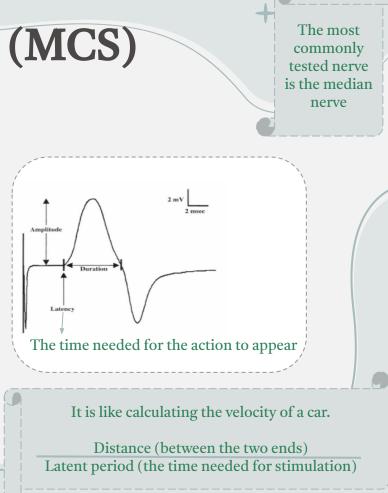
1-Axonal degeneration

2-Segmental demyelination.

(443: this test helps in diagnosing peripheral neuropathies)

Motor Conduction Studies (MCS)

Compound muscle action potential (CMAP): the recorded potential that represents the summation of all underlying individual muscle fiber action potentials.


• it is a biphasic potential with an initial upward deflection from the baseline

A motor conduction velocity can be calculated after two sites of stimulation:

- one distal (wrist)
- one proximal (elbow)

For each stimulation site (proximal and distal) the following parameters of CMAP are measured:

- latency
- amplitude
- duration

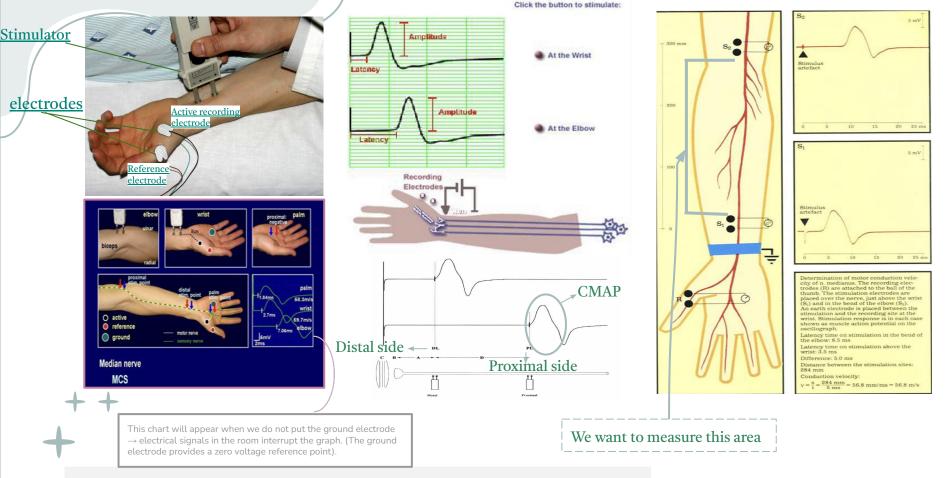
Female Slides Only

MCS Procedure:

2

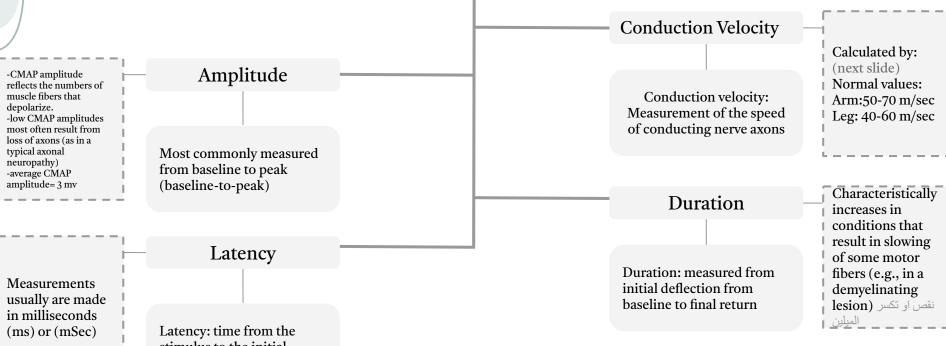
The **active recording electrode** is placed on the center of the muscle belly (over the motor endplate), and the **reference electrode** is placed distally about 3-4 cm

4


7

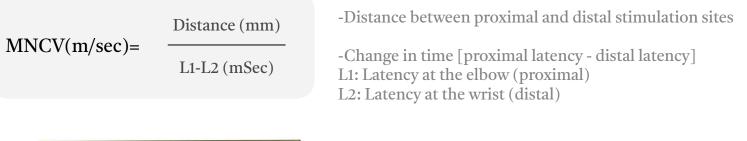
most nerves require a current in the range from 20 to 50 mA to achieve supramaximal stimulation. The stimulator then is placed over the nerve that supplies the muscle. As current is slowly increased from a baseline: more of the underlying nerve fibers are brought to action potential, and subsequently more muscle fiber action potentials are generated.

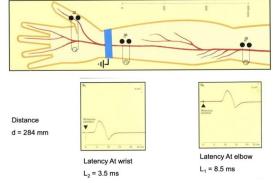
3


5 The recorded potential, known as the compound muscle action potential (CMAP), represents the summation of all underlying individual muscle fiber action potentials. 6 When the current is increased to the point that the CMAP no longer increases in size, one presumes that all nerve fibers have been excited and that <u>supramaximal</u> stimulation has been achieved.

The current then is increased by another 20% to ensure supramaximal stimulation.

MCS/NCS Procedure


Vectors of NCS/MCS

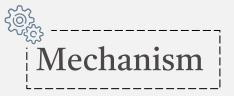


Latency: time from the stimulus to the initial deflection from baseline

Motor Nerve Conduction Velocity (MNCV)

MNCV can be calculated by:

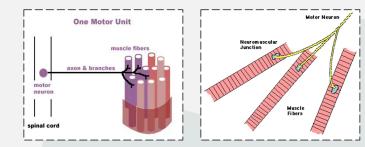
We know from physics that velocity is distance/time. If the following is given: Distance = 284 mm L1= 8.5 ms L2= 3.5 ms We can calculate velocity: MNCV = (284) / (8.5 - 3.5) = 56.8m/sec \rightarrow It is within the normal range of arm (50 - 70)


+ Patterns of nerve conduction

	Normal study of median nerve	Axon degeneration neuropathy (Axonal loss)	Demyelination neuropathy associated with inherited disorders	
Amplitude	$\geq 4 \text{ mV}$	Decreased (low)	Normal	
Distal latency (DL)	<4.2 ms	Normal or slightly prolonged (delay)	Markedly prolonged (delay)	
Conduction velocity (CV)	>49 m/s	Normal or slightly slowed	Markedly (significantly) slowed	
Morphology of potential Between proximal and distal sites	5 mV 5 msec	configuration of the potential does not changed between proximal and distal sites	No change in configuration between proximal and distal sites	
Graph	A DL = 3.0 msec CV = 59 m/sec	B (Small peak)	c DL = 12.7 msec CV = 12 m/sec (prolonged latency)	

ELECTROMYOGRAPHY (EMG)

Definition


+ It's a recording of electrical activity of the muscle by inserting needle electrode in the belly of the muscles or by applying the surface electrodes.

+ The potentials recorded on volitional effort are derived from motor units of the muscle, hence known as motor unit potentials (MUPs).

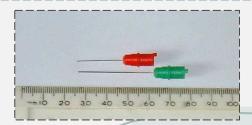
- It is one motor neuron and all of the muscle fibers it innervates.

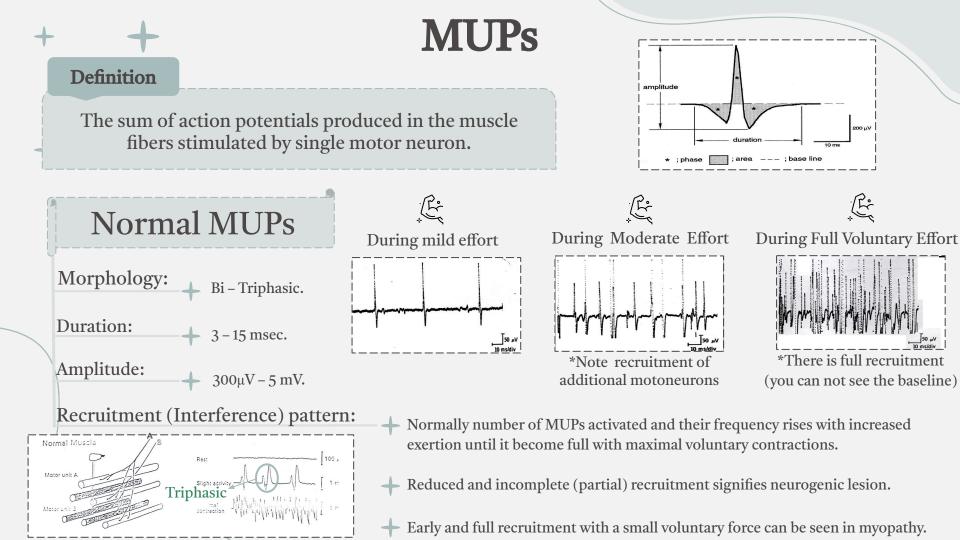
Atrophied muscle or fatty tissue.

Decreased in

many abnormal conditions that cause membrane instability, such as: <u>neuropathies</u>, <u>radiculopathies</u>, and <u>inflammatory myopathies</u>.

Increased in


Insertional activity


The electrical activity present as the electrode is passed through muscle cells. These are discharge potentials provoked by the disruption of the cell membrane itself.

Spontaneous activity

The skeletal muscle is silent at rest, hence spontaneous activity is absent.

Abnormal MUPs

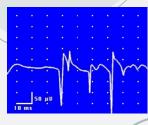
Presence of resting activity in form of:

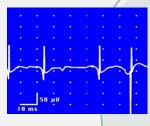
Positive sharp wave

Fibrillation potential

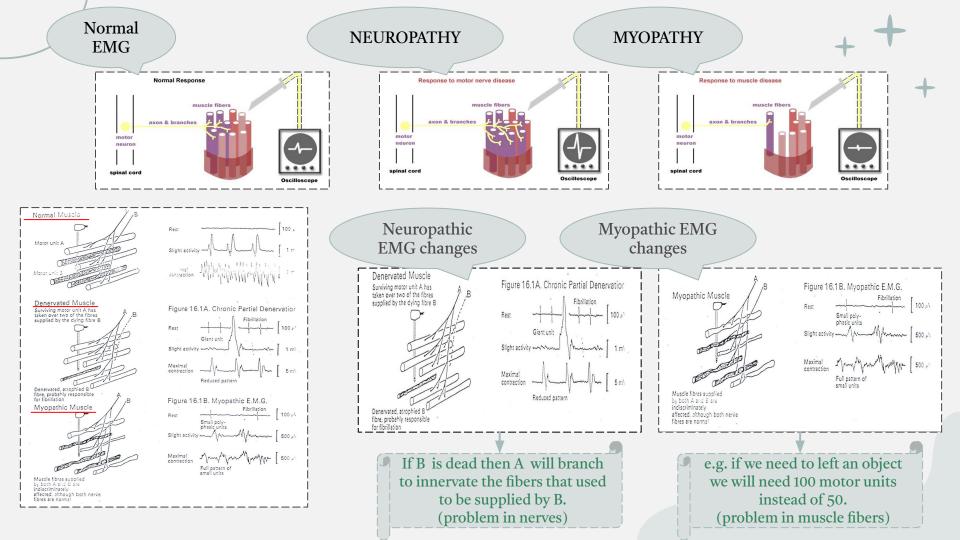
From single muscle fiber (can't be seen grossly) +A small potential of 50 to 100 μ V, 5 to 10 msec duration with abrupt onset and slow outset. It is the earliest manifestation of axonal denervation .

+ These are randomly occurring small amplitude potentials or may appear in runs. The audioamplifier gives sounds, as if somebody listen sounds of rains in a tin shade house. These potentials are generated from the single muscle fiber of a denervated muscle, possibly due to denervation hypersensitivity to acetylcholine.


+They are not visible through the skin.


+Fibrillations are not found exclusively in neurogenic disease, however; they also occur in inflammatory and dystrophic muscle disease.

Fasciculation potential


From motor unit (can be seen grossly) +These are high voltage, polyphasic, long duration potentials appear spontaneously associated with visible contraction of the muscle. They are generated from individual motor units

Hay be benign and they occur in motor neuron disease, radiculopathy and neuropathy

				11					
				·					
				·					
-	•	•	•	11`	•	•	•	•	•
				ÿ.					

Analysis of a motor unit potential (MUP)

MUP	MUP NORMAL		MYOPATHIC	
Duration msec. 3 – 15 msec >		> 15 msec	< 3 msec	
Amplitude 300 – 5000 μV		> 5000 µV (5 mV)	< 300 µV (0.3 mV)	
PhasesBiphasic / triphasic		Polyphasic	Polyphasic	
Resting ActivityAbsent		Present	Present	
Interference pattern	Full	Partial	Full pattern of small units	

MCQs

Q1:Demyelination markedly affect :					
A-amplitude	B-conduction velocity	C-distal latency	D-B&C		
Q2:When current is increased to the point that the CMAP no longer increases in size:					
A-action potential B-supramaximal stimulation		C-amplitude	D-RMP		
Q3:Motor conduction velocity can be calculated after 2 sites of stimulation:					
A-distal, proximal B-anterior, inferior		C-medial, lateral	D-A&B		
Q4:A common measurement made during the NCS test:					
A-EMG	B-ETC	C-MCV	D-MCS		

Q1: A 19 years old medical student presented to neurology department in KSU complaining of numbress of his right hand, nerve conduction study was done and showed the following findings: <u>conduction velocity</u>: 37 M/S, <u>amplitude</u>: 4.5μ V, <u>distal latency</u>: 8 mS. What is the diagnosis?

A- Fibrillation potential	B- Axonal loss	C- Demyelination	D- Fasciculation potentials
---------------------------	----------------	------------------	-----------------------------

Q2: A 9 years old boy presented with muscle weakness in KSU neurology department, EMG done and showed the following: fibrillation potential at rest, <u>MUP</u>: polyphasic, <u>amplitude</u>: 200 μ V, <u>muscle action potential duration</u>: 2 mS, during maximum contraction showed early recruitment of motor unit. (Note, the doctor might bring the diagram instead). What is the diagnosis?

A-Neuropathy

SAQs

Q1: In nerve conduction study, the CMAP represents what?

A1: summation of all underlying individual muscle fiber action potentials.

Q3: What are the Two types of peripheral nerve lesions?

A3: 1- Axonal degeneration

2- Segmental demyelination.

Q2: Mention the characteristics of normal MUPs.

A2: Morphology: Bi-Triphasic. Duration: 3-15 ms. Amplitude: 300-5000 μV. Recruitment (Interference) pattern: full at maximum contraction.

Q4: What is the MNCV equation?

A4:

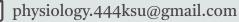
Distance (mm)

L1-L2 (mSec)

Ahmad Addas

- - Nawaf Alshalan
- Fawaz Almadi
- Khalid Alkanhal
 - Abdulrahman Khaldi
- Khalid Alghamdi

Talal Alrobaian


Abdullah Muhnna

Zyad Alshuhail

Ibrahim Al Bin Ali

Mays Ahmed

Alanoud Alnajawi

Joud Binkhamis

Shaden Alshammari

Leena Shagrani

Marwah Fal

- Rahaf Mohammed
 - Huda Bassam
 - Aram Alzahrani

Noor Altalag