

Electron Transport Chain (Respiratory Chain) Respiratory Block

- Main text
- Important
- Girls Slides
- Boys Slides
- Doctor Notes
- Extra

Editing file

objectives

- Understand how energy-rich molecules including glucose are metabolized by a series of oxidation-reduction reactions ultimately yielding CO2 and water
- Explain the process of electron transport chain that releases free energy, which is used for ATP synthesis and heat production
- Recognize the reactions of electron transport chain taking place in mitochondria that are coupled to oxidative phosphorylation

- Overview -

In general, the whole process of ETC is not fully understood however science develops day by day.

- Remember when we learnt in Glycolysis and Krebs Cycle we will end with 10 NADH and 2 FADH₂.
- Now we will study how these molecules transfer their electrons through ETC to benefit from their energy.
- ETC is a series of Complexes transfer electrons through the inner mitochondrial membrane.
- O, is the final destination of ETC, it will accept the electrones and will be reduced to form H_2O .
- Through ETC, Hydrogen ions are pumped which will make the ATP

Electron transport chain (ETC)

what is ETC?

- A system of electron transport that uses respiratory O₂ to finally produce ATP (energy)
- it is the final common pathway of metabolism

where?

located in the inner mitochondrial membrane

characteristics:

• uses maximum amount of body's oxygen

mechanism?

electron from food metabolism are transported to O₂ (which will be reduced to H₂O and during this process you make your ATP)

Metabolic breakdown of energy-yielding molecules

2					
	Oxidation	<u>Reduction</u>			
	Gain of oxygen	Loss of oxygen			
	Loss of hydrogen	Gain of hydrogen			
	Loss of electrons	Gain of electrons			

Dr:"must know difference"

Mitochondria

singular form of mitochondria is mitochondrion

Outer membrane:

Contains special channels making it highly permeable to most small ions

Inner membrane

all ETC components present here (except cytochrome C) it is very selective, even small ions can not pass

Cristae

highly folded structures. they are responsible for increasing area of the surface

◀ matrix

gel-like substance that contain enzymes, DNA and other

Intermembrane space the region between the outer and the inner mitochondrial membranes

Boys Dr didn't focus too much

components of ETC

All members/components are located in the inner mitochondial membrane (IMM) except Cytochrome C present in the intermembrane

All the components are part of ETC except complex V

components of ETC

cont...

Complex	Name	Funct	
	NADH Dehydrogenase	Collects the pair of electric passes them to CoQ; a	
II	Succinate Dehydrogenase	Part of the TCA/Krebs cyc transfers elec	
III	Cytochrome bc1	transfer electrons; ac Electrons flow from: CoQ → Complex III →	
IV	Cytochrome a+a3		
V	ATP synthase	 Synthesizes ATP; cons F0- membrane spannin F1- extramembranous 	

tion

ctrons from NADH and acts as a proton pump

e (succinate \rightarrow fumarate + FADH₂) trons to CoQ

ts as a proton pump

Cyt. c \rightarrow Complex IV

sists of two domains: g domain domain

complex V is not part of ETC but it is coupled to it.

Each cytochrome is a protein that contains Heme group (porphyrin ring + iron in Fe³⁺ state)

When cytochromes accept electron: Fe^{3+} (ferric) is converted to Fe^{2+} (ferrous) Fe^{2+} is reoxidized to Fe^{3+} when it donates ETC cytochromes: cytochrome bc1 (complex III) cytochrome C cytochrome a+a3 (complex IV)

Just understand the main general concept

Organization of ETC

- Each complex accepts or donates electrons to mobile carriers
- Carriers accept electrons from donors and then donate to the next carrier in chain
- Electrons finally combine with oxygen and protons to form water $e^{-} + 0_{1} + H^{+} \rightarrow H_{2}0^{-}$
- Oxygen is required as a final acceptor (respiratory chain)

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Electron Transport Chain

site specific inhibitors of ETC

dr's note: it is chemical substances used sometimes as Anti-insecticides مضادات حشرية) blocks one of these circles which leads to reduce or stop the production of ATP then death of the cell.

-Rotenone: prevent FMN from transferring electron to CoQ.

this will lead to \rightarrow 1- ATP synthesis decreased. 2- oxygen consumption decreased.

-Antimycin-A: prevent cytochrome bc1 from transferring electron to cytochrome c.

-CN (Cyanide), CO, H₂S, NaN₃: prevent cytochrome a+a₃ from transferring electron to oxygen.

*هناما يوقف انتاج ATP فقط بقل؛ لأن ETC ممكن تبدأ من complex 1 or 2

- The energy of electron transfer is used to drive the protons out of the matrix.
- It is done by complexes I, III and IV (proton pumps).
- This creates a proton gradient across the IMM (inner

ETC is coupled to proton transport for ATP synthesis

mitochondrial membrane) to synthesize ATP.

transport of protons

- because of proton pump will increase the concentration of H⁺ at intermembrane space this will activates complex 5.
- when complex 5 activated it converts ADP+P → ATP, and pump H⁺ back to mitochondrial matrix.
- H⁺ will bind to Complex 5 at F0 then transferred into F1 and make a conformational changes that lead to the synthesis of ATP

- The energy required for phosphorylation of ADP to ATP = 7.3kcal/mol.
- Energy produced from the transport of a **pair** of electrons from NADH to $O_2 = 52.58$ kcal.
- No. of ATP molecules produced is 3 (NADH to O_2).
- heat.

Energetics of ATP synthesis

• Excess energy is used for other reactions or released as

· · · · · · · · · · · · · · · · · · ·						
ATP made per O atom reduced						
one O	3ATP	or NADH				
one O	2ATP	r FADH ₂				

inhibitor of ATP synthesis

oligomycin

-Binds to FO domain of ATP synthase and closes the H^+ channel.

• Uncoupling proteins (UCPs)

- thermogenesis).

Mechanism of both is important***

- create proton leaks (allow protons to reenter the matrix without ATP synthesis).

- Energy is released as heat (nonshivering

Take Home Messages

- ETC is a common pathway of transferring energy-rich electrons from metabolism finally yielding CO2 and water.
- The energy of the electrons transferred is used for ATP synthesis and heat production

References: Lippincott's Illustrated Reviews, Biochemistry, 6th Edition, Denise R. Ferrier, Lippincott Williams & Wilkins, USA, pp. 73-79

MCQ

Q1) What products of	glucose oxidation are es	sential for oxidative pho	sphorylation?					
A- Acetyl CoA	B-NADH and FADH ₂	C- Pyruvate	D-NADPH and ATP					
Q2) Which of the follo	wing happen during the B	Electron Transport Chai	n?					
A- H ⁺ 's travel down the ETC, pumping high energy electrons into the intermembrane space.	B- H⁺'s diffuse through ATP Synthase,turning it so it can make ATP.	C- High energy electrons travel down the ETC, pumping H ⁺ 's into the intermembrane space.	D- none of the above					
Q3) Which complex of the electron transport chain in cellular respiration does not directly impact the intermembrane space's pH?								
A- Complex III	B- Complex II	C- Complex IV	D- Complex I					
Q4) If unknown drug destroys the H ⁺ gradient that forms in the electron transport chain. What is the most likely consequence?								
A- No effect will occur	B- ATP production will increase	C- Oxygen consumption will increase	D-The cells will be forced to perform fermentation					
Q5) What is the final electron acceptor in the electron transport system, and what is formed?								
A-oxygen; H ₂ O	B- ADP; ATP	C-NAD; NADH	D- NAD; FADH2					

Answers: 1- B 2- C 3- B 4- D 5- A

SAQ

Q1) Where does ETC located?

Q3) What are the complexes responsible for driving the protons out of the matrix?

Q2) which members of ETC is (Lipid soluble + non-protein) molecule?

Answers

Q1) In the inner mitochondrial membrane

Q3) complexes I, III and IV (proton pumps)

Biochemistry Team

Leaders

Members

Ghaida Alotaibi

Reema Aldhabaan

Norah Albahily

Khalid Alghamdi Faisal Alghamdi

Osama Alhenaki Nasser Alabdulsalam

Faisal Bakri

