Diffusion of Oxygen \& Carbon Dioxide

Color Index:
-Main Text -Important -Notes -Boy Slides -Girl Slides -Extra

Objectives

01 Define partial pressure of a gas.
02 Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law).

03 Describe the factors that determine the concentration of a gas in a liquid.

04 Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law).

05 Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).

06 Identify the various factors determining gas transfer: surface area, thickness, partial pressure difference, and diffusion coefficient of gas.

07 State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

Partial Pressures \& Solubilities

Thickness \& Surface Area of Respiratory Membrane

REVIEW Gas Exchange From Guyton

Respiratory Membrane Layers (From Inside to Outside)

A layer of fluid containing surfactant that
lines alveolus \&
reduces surface tension of alveolar fluid.

Alveolar epithelium, which is composed of thin epithelial cells.

An epithelial basement membrane.

$$
\begin{aligned}
& \text { شر ح لـطريقة عبور الـ O2 } \\
& \text { وطريقة عبور الـ CO2 عكسها }
\end{aligned}
$$

The capillary endothelial membrane.

A capillary basement membrane that in many places fuses with alveolar epithelial basement membrane.

A thin interstitial space (يتغبر حجمه حسب
between alveolar epithelium \& capillary membrane.

Gas Exchange through Respiratory Membrane

After ventilation of alveoli with fresh air \rightarrow diffusion of $\mathrm{O}_{2} \& \mathrm{co}_{2}$ across respiratory membrane (alveolo-capillary membrane).

There is no gas exchange in terminal bronchi
\{0 - Thickness: 0.2-0.6 micrometer.

- Total surface area: 50-100 m^{2} in a normal adult human male, or $70 \mathrm{~m}^{2}$

Is Doctor said:

Gas exchange criteria:
-Wide space
-Thin membrane

This small amount of blood spread over the entire surface of a 25×30-foot floor \rightarrow it is easy to understand the rapidity of the respiratory exchange of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$.

Partial Pressure of Gases

Gases of physiological importance are: $\mathrm{O}_{2} \& \mathrm{CO}_{2}$.

Rate of diffusion of each of these gases is directly proportional to the partial pressure of this gas alone, which is called the partial pressure of the gas.

Pressure is caused by: constant impact of kinetically moving molecules against a surface.

Pressure of a gas acting on surfaces of respiratory passages \& alveoli is proportional to the summated force of impact of all molecules of that gas striking the surface at any time.

Sressure of a gas is directly proportional to the concentration of gas molecules.
§ Doctor said:
"Concentration is the moving force but we're gonna call it partial
pressure"

Thanks to 39 team!

Explanation of Partial pressure of gases (in a mixture)

The concept of partial pressure can be explained as follows:
Consider air, which has an approximate composition of 79% nitrogen and 21% oxygen. The total pressure of this mixture at sea level averages 760 mmHg . It is clear from the preceding description of the molecular basis of pressure that each gas contributes to the total pressure in direct proportion to its concentration.
$\rightarrow \quad$ Therefore, 79% of the 760 mmHg is caused by nitrogen (600 mmHg) and 21% by $\mathrm{O}_{2}(160 \mathrm{~mm} \mathrm{Hg})$.
\rightarrow Thus, the "partial pressure" of nitrogen in the mixture is 600 mmHg , and the "partial pressure" of O_{2} is 160 mmHg ; the total pressure is 760 mm Hg , the sum of the individual partial pressures.
$\rightarrow \quad$ The partial pressures of individual gases in a mixture are designated by the $\mathrm{PO}_{2}, \mathrm{PCO}_{2}, \mathrm{PN}_{2}$, and so forth.

Diffusion of Gases Between the Gas Phase in Alveoli and Blood
 The partial pressure of each gas in the alveolar respiratory gas mixture tends to force molecules of that gas into

 solution in the blood of the alveolar capillaries. Conversely, the molecules of the same gas that are already dissolved in the blood are bouncing randomly in the fluid of the blood, and some of these bouncing molecules escape back into the alveoli. The rate at which they escape is directly proportional to their partial pressure in the blood.
But in which direction will net diffusion of the gas occur?

The answer is that net diffusion is determined by the difference between the two partial pressures. If the partial pressure is greater in the gas phase in the alveoli, as is normally true for oxygen, then more molecules will diffuse into the blood than in the other direction. Alternatively, if the partial pressure of the gas is greater in the dissolved state in the blood, which is normally true for CO_{2}, then net diffusion will occur toward the gas phase in the alveoli.

Dalton's Law of Partial Pressures

Dalton's Law of Partial Pressures: the partial pressure of a gas in a mixture of gases is the pressure that gas would exert if it occupied the total volume of the mixture.

Partial pressure: total pressure multiplied by fractional concentration of dry gas.
For humidified gas: $\mathrm{PX}=\left(\mathrm{PB}-\mathrm{PH}_{2} \mathrm{O}\right) \times \mathrm{F}$

Barometric pressure (PB): the sum of partial pressures of $\mathrm{O}_{2^{\prime}} \mathrm{CO}_{2^{\prime}} \mathrm{N}_{2^{\prime}} \& \mathrm{H}_{2} \mathrm{O}$.
Percentages of gases in dry air at a barometric pressure of 760 mmHg :

$$
\mathrm{O}_{2}=21 \%(0.21) \text { 第 } \mathrm{N}_{2}=79 \%(0.79)
$$

$$
\mathrm{CO}_{2}=0 \%(0)
$$

Air is humidified in airways \rightarrow water vapor pressure $\left(47 \mathrm{mmHg}\right.$ at $37^{\circ} \mathrm{C}$) is obligatory.

Partial Pressures of $\mathbf{O}_{\mathbf{2}} \& \mathbf{C O}_{\mathbf{2}}$

O_{2} concentration in atmosphere: 21%
PO_{2} in atmosphere:
$=760 \mathrm{mmHg} \times 21 \%$
$=160 \mathrm{mmHg}$

Mixes with "old" air already
present in alveoli $\rightarrow \mathrm{PO}_{2}$ becomes 104 mmHg in alveoli.
CO_{2} concentration in atmosphere: 0.04%
PCO_{2} in atmosphere:
$=760 \mathrm{mmHg} \times 0.04 \%$
$=0.3 \mathrm{mmHg}$

Mixes with high CO_{2} levels from

 residual volume in the alveoli \rightarrow PCO_{2} becomes 40 mmHg in alveoli.

Humidification of air in respiratory passages

Atmospheric air: nitrogen $+\mathrm{O}_{2}+$ almost no CO_{2} \& little water vapor.

As soon as atmospheric air enters respiratory passages, it is exposed to fluids that cover respiratory surfaces.

Even before air enters alveoli: it becomes almost totally humidified.
"Respiratory zone"

Table 40-1 Partial Pressures (in mm Hg) and composition (in percentages) of Respiratory Gases as They Enter and Leave the Lungsa

	Atmospheric Air	Humidified Air	Alveolar Air	Expired Air
N_{2}	$\begin{aligned} & 597 \\ & \quad(78.62) \\ & \hline \end{aligned}$	$\begin{aligned} & 563.4 \\ & (74.09) \\ & \hline \end{aligned}$	$\begin{aligned} & 569 \\ & \quad(74.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 566 \\ & (74.5) \end{aligned}$
O_{2}	$\begin{aligned} & 159 \\ & (20.84) \end{aligned}$	$\begin{aligned} & 149.3 \\ & (19.67) \end{aligned}$	$\begin{aligned} & 104 \\ & (13.6) \\ & \hline \end{aligned}$	120
CO_{2}	0.3 (0.04)	0.3 (0.04)	40 (5.3)	27 (3.6)
$\mathrm{H}_{2} \mathrm{O}$	3.7 (0.50)	47 (6.20)	47 (6.2)	47 (6.2)
Total	760 (100)	760 (100)	760 (100)	760 (100)
${ }^{\text {a At sea level. }}$				

Values for $\mathrm{PO}_{2} \& \mathrm{PCO}_{2}$ in inspired dry, humidified tracheal, alveolar air, \& pulmonary blood.

Thanks to 443 team!

Partial Pressures of $\mathrm{O}_{2} \& \mathrm{CO}_{2}$

Important Slide

Partial Pressures of respiratory gases as they enter and leave the lungs (at sea level)

(mmHg)	NH 2	O 2	CO	H 2 O
Atmospheric air	$597.0(78.62 \%)$	$159.0(20.84 \%)$	$0.3(0.04 \%)$	$3.7(0.50 \%)$
Humidified air	$563.4(74.09 \%)$	$149.3(19.67 \%)$	$0.3(0.04 \%)$	$47.0(6.20 \%)$
Alveolar air	$569.0(74.9 \%)$	$104.0(13.6 \%)$	$40.0(5.3 \%)$	$47.0(6.2 \%)$
Expired air	$566.0(74.5 \%)$	$120.0(15.7 \%)$	$27.0(3.6 \%)$	$47.0(6.2 \%)$

Factors Affecting Gas Diffusion

 Fick's Law/Principle

Factors Affecting Gas Diffusion

MW of $\mathrm{O}_{2}<\mathrm{MWCO}_{2} ; \mathrm{CO}_{2}$ is 24 times more soluble than O_{2}.
\longmapsto Net result: CO_{2} diffusion ~ 20 times faster than O_{2} diffusion.
is Doctor said:
Alveoli has a spherical shape \rightarrow more surface area \rightarrow more diffusion occurs.

Factors determining the partial pressure of a gas dissolved in a solution:

Solubility coefficient of the gas

Partial pressure of CO_{2} (for a given conc.) is less than one twentieth (5\%) that exerted by O_{2}.
Relative rates at which different gases at the same pressure level will diffuse are proportional to their diffusion coefficient:

$$
\mathrm{O}_{2}=1.0
$$

$$
\mathrm{CO}_{2}=20.0
$$

$$
N_{2}=0.53
$$

Alveolar Air \& Atmospheric Air Composition

Alveolar and atmospheric air concentrations of gases are different due to $\underline{4}$ reasons:
01 Alveolar air is only partially replaced by atmospheric air with each breath.

- Only 350 ml of new air is brought into alveoli with each normal inspiration, and the same amount of old alveolar air is expired.
i.e. Volume of alveolar air replaced by new atmospheric air with each breath is only one seventh of total.

02 Oxygen is being absorbed into the pulmonary blood from alveolar air.

Exchange of gas from an alveolus with successive breaths.

Slow Replacement of Alveolar Air

Importance of the slow replacement of alveolar air:

Prevent sudden changes in gas concentrations in blood

Makes the respiratory control mechanism much more stable

Helps preventing excessive increases \& decreases in:
\% Tissue oxygenation
解 Tissue CO_{2} concentration
\{ Tissue PH when respiration is temporarily interrupted
is Doctor said:
PO, goes down as it moves from atmosphere to alveoli. PCO_{2} goes up as it moves from alveoli to atmosphere.

Air is expired. Therefore, the volume of alveolar replaced by new atmospheric air with each breath only one seventh of the total ,so multiple breaths required to exchange most of alveolar air.this figure shows this slow rate of renewal of the alveolar air.in the first alveolus of the figure,

Transport of O_{2} in Arterial Blood

- About $\mathbf{9 8 \%}$ of blood: Lungs \rightarrow alveolar capillaries (oxygenated up to $\mathrm{PO}_{2}=$ $104 \mathrm{mmHg}) \rightarrow$ left atrium.
- About 2\% of blood (shunt flow):

Left atrium \rightarrow left ventricle \rightarrow aorta \rightarrow bronchial circulation (supplies deep tissues of lungs + not exposed to lung air $) \rightarrow$ lungs $\left(\mathrm{PO}_{2}=\right.$ pressure of normal systemic venous blood $=40 \mathrm{mmHg}$).
Blood is shunted \& bypass the gas exchange areas.

- $\mathbf{P O}_{2}$ of shunt blood: PO_{2} of shunt blood after leaving lungs = normal systemic venous blood $=\mathbf{4 0} \mathbf{~ m m H g}$.
- Venous Admixture In pulmonary veins: shunted blood combine with oxygenated blood from alveolar capillaries (venous admixture of blood) $\rightarrow \mathrm{PO}_{2}$ of blood entering left heart into the aorta to falls to 95 mmHg .

Pulmonary Shunt

PO_{2} \& PCO_{2} in Normal Expired Air

Normal expired air contains: dead space air + alveolar air.
Normal expired air has gas concentrations \& partial pressures that is between those of alveolar air and humidified atmospheric air.

is Doctor said:
 Conduction zone: dead space air

PO , decreases as it enters conduction zone $(160 \rightarrow$ 149)
PCO_{2} does not change
Respiratory zone: normal expired air + alveolar air
PO_{2} begins to decrease $(149 \rightarrow 104)$
PCO_{2} begins to increase $(\sim 0 \rightarrow 40)$ from capillaries.

Figure 39-6 Oxygen and carbon dioxide partial pressures in the various portions of normal expired air.

Diffusion of $\mathrm{O}_{\mathbf{2}}$

01 Alveoli \rightarrow Pulmonary capillaries

02 Systemic capillaries \rightarrow Tissues

Figure 40-3 Diffusion of oxygen from a peripheral tissue capillary to the cells. (Po, in interstitial fluid $=40 \mathrm{~mm} \mathrm{Hg}$, and in tissue cells $=23 \mathrm{~mm} \mathrm{Hg}$.)

439:

1-All arteries in the body are oxygenated except pulmonary artery. 2-All veins in the body are deoxygenated except the pulmonary vein.

ξ Doctor said:

Pulmonary shunt:
As the blood in the pulmonary vein is transported to the left atrium in order to be pumped to the systemic tissues PO_{2} changes 104 $\rightarrow 95$ as this blood is mixed with some blood from the bronchial tree veins to nourish the lung tissue itself (the only venous blood in left atrium).

Diffusion of CO_{2}

01 Peripheral tissue cells \rightarrow Capillaries

Figure 40-5 Uptake of carbon dioxide by the blood in the tissue capillaries. (PCO_{2} in tissue cells $=46 \mathrm{~mm} \mathrm{Hg}$, and in interstitial fluid $=45 \mathrm{~mm} \mathrm{Hg}$.)

02 Pulmonary capillaries \rightarrow Alveoli

Figure 40-6 Diffusion of carbon dioxide from the pulmonary blood into the alveolus. (This curve was constructed from data in Milhorn HT Jr, Pulley PE Jr: A theoretical study of pulmonary capil lary gas exchange and venous admixture. Biophys J 8:337, 1968.)

Diffusion of Oxygen \& CO2

Thanks to 443 team!

Carbon Dioxide

 (mmHg 46) (mm (mg 45) Ifluid

 فيما نطلق عليه الـلـ venous end وبيرتفع بالـalveoli اللي ر حتتخلص منه بالــexpiration.

EXTRA

الـ2PO بالدم بداية (arterial end) رح يكون 40 mmHg لكن بما ان ضغط الـ 40 في

طيب الحين الامطلع من الرئة محمل بالأكسجين و الضغط 104، كيف وصل للخلايا بالصورة
اليمين وهو 95؟ دخل عليه دم غير مؤكسج و هو بطر يقه للقلب و الــلـ aorta ونتج عن ذلك

$$
\text { انخفاض الضغط من } 104 \text { إلى } 95 .
$$

(mmHg 23) ويطلع الام مره ثانية 40 (mmHg للقلب ومنه للرئة.

$\mathbf{O}_{\mathbf{2}}$ Concentration in Alveoli

At resting conditions:

. 250 ml of 02 are extracted by tissues at Ventilation rate of $4.2 \mathrm{~L} / \mathrm{min}$.

During exercise:

- 1000 ml of 02 is extracted by tissues per minute.
- Rate of alveolar ventilation must increase 4 times to maintain the alveolar PO2 at normal value (104 mmHg).

02 concentration in alveoli \& $\mathbf{0 2}$ partial pressure are controlled by:

Rate of absorption of 02 into blood.Rate of entry of new 02 into lungs by the ventilatory process.

Figure 39-4 Effect of alveolar ventilation on the alveolar PO_{2} at two rates of oxygen absorption from the alveoli- $250 \mathrm{ml} / \mathrm{min}$ and $1000 \mathrm{ml} / \mathrm{min}$. Point A is the normal operating point.

Effect of alveolar ventilation on alveolar PCO2

Normal rate of CO2 excretion: $200 \mathrm{ml} / \mathrm{min}$, at normal rate of alveolar Ventilation rate of $4.2 \mathrm{~L} / \mathrm{min}$.

Alveolar PCO2 increases directly in proportion to the rate of CO2 excretion by tissues.

Alveolar PCO2 decreases in inverse proportion to alveolar ventilation.

Figure 39-5 Effect of alveolar ventilation on the alveolar PCO_{2} at two rates of carbon dioxide excretion from the blood- $800 \mathrm{ml} /$ min and $200 \mathrm{ml} / \mathrm{min}$. Point A is the normal operating point.

Summary

Figure 40-2 Changes in PO_{2} in the pulmonary capillary blood, systemic arterial blood, and systemic capillary blood, demonstrating the effect of "venous admixture."

Changes in P02 in pulmonary capillary,
systemic arterial, and systemic capillary blood demonstrating the effect of venous admixture.

P02 and PCO2 in air, lung and tissues.

MCQs

Q1: A cardiac catheterization is performed in a healthy adult. The blood sample withdrawn from the catheter shows 95 mmHg of 02 saturation. Where was the catheter tip located?

A- alveolar capillaries	B- Left heart	C- systemic venous blood	D- Pulmonary artery

Q2: If alveolar surface area is decreased 50% and pulmonary edema leads to a doubling of diffusion distance, how does diffusion of $\mathbf{O 2}$ compare with normal?

A- $\mathbf{2 5 \%}$ increase	B- $\mathbf{2 5 \%}$ decrease	C- $\mathbf{5 0 \%}$ decrease	D- $\mathbf{7 5 \%}$ decrease
Q3: Why is CO2 more permeable than $\mathbf{0 2}$?			
A- Higher MW	B- Higher partial pressure	C- Higher solubility	D- All of the above

MCQs

Q4:Which of the following describes diffusing capacity of 02 in the lung?

A-Doesn't change during exercise	B- Is greater than diffusing capacity for CO2	C-the Po2 of it is 760 mmHg	D- Is directly related to alveolar capillary surface area

SAQs

Q1: Mention 4 of factors affecting gas diffusion?

Q2: Lung air is not replacement quickly but slowly, what is the importance of that?

Q3: why is alveolar and atmospheric air concentrations of gases are different? mention 3 reasons

Q4: Describe in briefly the process of 02 Diffusion?

A1:
Δ P: Partial pressure
A: Surface area
S: Solubility
MW
d: Diffusion distance.
A2: slide 16
A3: slide 15
A4: slide 19

