Oxygen & Carbon Dioxide Transport

Color Index: -Main Text -Important -Notes -Boy Slides -Girl Slides -Extra

PHYSIOLOGY

IIIIIIIII TTEAMAGA

Special Thanks to Hasan Alsughayir for the Sketch <3

Objectives

Male Dr: Thamir Al-khlaiwi Female Dr: Aida Korish

Understand the forms of oxygen transport in the blood and the importance of each form.

Differentiate between O2 capacity, O2 content and O2 saturation.

Describe (Oxygen- hemoglobin dissociation curve).

Explain how DPG, temperature, H+ ions and PCO2 affect the affinity of O2 for Hemoglobin and the physiological importance of these effects.

Define the P50 and its significance.

Describe the three forms of carbon dioxide that are transported in the blood, and the chloride shift.

Diffusion capacity of the respiratory membrane

Is the volume of gas that diffuses through the membrane each minute for a pressure difference of 1 mmHg

Diffusing capacity for oxygen at rest : 21 ml/min/mmHg

During rest tissues consume 230-250 mlO2 /min why? If the mean oxygen pressure difference across the respiratory membrane = 11 mmHg and the diffusing capacity for oxygen at rest = 21 ml/min/mmHg 11x21= 230ml oxygen diffusing through the membrane each minute

Male Slides Only

Changes in the oxygen diffusing capacity during exercise

- Diffusing capacity for oxygen during exercises: 65 ml/min/mmHg.
- During exercise, the oxygen requirement increases 20 times, along with cardiac output, so the time blood remains in the pulmonary capillaries becomes less than half normal despite the fact that additional capillaries open up. But the blood is almost completely saturated with oxygen when it leaves the pulmonary capillaries

The reasons for this are as follows:

The diffusing capacity for oxygen increases almost 3x during exercise, this result mainly from increasing numbers of capillaries participating in the diffusion.

At rest the blood stays in the lung capillaries about three times as long as necessary to cause full oxygenation.Therefore, even with shortened time of exposure in exercise, the blood is still fully oxygenated or nearly so.

In addition to increased alveolar ventilation.

Dilatation of the other capillaries.

A more even V/Q ratio all over the lung.

Diffusing capacity of Carbon dioxide

- It Diffuses 20x greater than O2 due to greater diffusion coefficient, which is 20 times that for O2
- Diffusion capacity for carbon dioxide is 200-450 ml/min.
- During exercise the capacity increases to be 1200-1300 ml/min.

Forms of O2 Transport in Blood

• The presence of hemoglobin (Hb) in RBCs allows blood to transport 30 - 100 times as much O2 as could be transported in the form of dissolved O2 in the water of blood.

Male Slides

Terminology

O2 content	Amount of O2 in blood (ml O2 /100 ml blood). equal 19.4 ml	
O2 binding capacity (full volume)	Maximum amount of O2 bound to hemoglobin (ml O2 / 100 ml blood) measured at 100% or fully saturation. equal 20ml	
Percent saturation	Percentage of heme groups bound to O2 O2 content % Saturation of Hb = ——————————————————————————————————	
Dissolve O2	Unbound O2 in blood (ml O2 / 100 ml blood) (O2 dissolved in plasma) equal 0.3ml	

Any difference in the structure of Hb \rightarrow many diseases where Hb won't be able to carry O2.

All extra from 43 \heartsuit

Transport of O2 in Arterial Blood

Blood is 100% saturated with O2:

- Each gram of Hb carry 1.34 ml O2
- An adult has 15g Hb/100 ml (dl) blood:
- O2-content / binding capacity = 15 g Hb x 1.34 ml O2
- = 20 ml / 100 ml blood (dl) = 20.1 ml

Blood is 97% saturated with O2:

- Each 100 ml blood contain 19.4 ml O2

هنا راح يتساوى binding capacity و content لأن الدم 100% مشبع بالأوكسجين فعادي تسمونه أي واحد

97% Because of physiological shunt

02

Amount of O2 released from Hb to tissues: 5 ml O2 / 100 ml blood.

- O2-content* in venous blood at rest = 19.4 ml - 5 ml =14.4 ml

During strenuous exercise:

- O2 uptake by tissue increases 3 5 folds.
- 15 ml O2 is taken by tissues from each 100 ml (dl) blood . So O2-content in venous blood = 19.4 15
- = 4.4 ml O 2/dl or/100 ml blood.

الباقي في الوريد هو ناتج طرح اللي كان في الشريان ناقص اللي راح للنسيج

Transport of O2 in Arterial Blood

At rest:

Tissues consume 250 ml O2 /min & produce 200 ml CO2

```
^{\$} 5L blood \sim O2 ml کم O2 ml ^{\$} 5L blood \sim 5ml O2
5L blood -> X
5000 x 5
X = ----- = 250 ml O2
100
```

- Remaining blood in venous return (14.4 ml) is acting as storage of O2 for sudden use (e.g. exercise).

Oxygen Hemoglobin Saturation Curve

Higher PO2 \rightarrow greater Hb saturation with O2.

PO2 & Hb-O2 relation is not linear.

Oxygen Hemoglobin (Oxyhemoglobin) Saturation Curve or O2 - Hb dissociation Curve <u>Shape</u>: S - shaped / sigmoid

Importance of curve: Gives indication when Hb is fully loaded & when it is not

Figure 40-9

In systemic arterial blood: Partial pressure of O2 \approx 95 mmHg containing 19.4 mL of O2 In Venus Return: Partial pressure of $O2 \approx 40 \text{ mmHg}$ containing 14.4 mL O2 . (blood after supplying tissue with 5 ml O2) During Exercise: Amount of O2 consumption by tissue increases leaving only 4.4 mL O2 in venous return.

Oxyhemoglobin Dissociation Curve

Effect of blood PO_2 on the quantity of oxygen bound with hemoglobin in each 100 milliliters of blood.

Factors Shifting O2-Hb Dissociation Curve

The position of dissociation curve can be determined by measuring P50.

P50: arterial PO2 at which 50% of Hb is saturated with O2.

Normally P50 = 26.5

Decreased P50:

- → Increased affinity of Hb to O2
- \rightarrow Curve shifts to left.

05

Increased P50:

- \rightarrow Decreased affinity of Hb to O2
- \rightarrow Curve shifts to right.

Figure 40-10

Shift of the oxygen-hemoglobin dissociation curve to the right caused by an increase in hydrogen ion concentration (decrease in pH). BPG, 2,3-biphosphoglycerate.

Right & Left Shifts of Dissociation Curve

- If O_2 is Loaded to Hb (from lung) \rightarrow left shift.
- If O_2 is unloaded to tissues (from Hb) \rightarrow right shift.

Factors shifting the curve to the right:

1-Increased **2,3 DPG** (facilitate O₂ release):

-Synthesized in RBCs from glycolytic pathway.

-Binds tightly to reduced Hb.

-Increased in anemia & hypoxemia \rightarrow serves as an important adaptive response in maintaining tissue oxygenation.

2-Increased H+ (decreased PH)

- 3-Increased temperature
- 4-Increased PCO,

Fetal Hb: has a P50 of 20 mmHg in comparison to 26.5 mmHg of adult Hb. So the curve of fetal Hb is **left shifted**

(during exercise: right shift occurs)

Bohr effect

Is the effect of $CO_2 \& H^+$ on the 02-Hb dissociation curve

At lung: CO2 diffuses from blood to alveoli \rightarrow decrease blood CO2 & H+ \rightarrow shift curve to left \rightarrow increase O2 affinity to Hb \rightarrow more O2 transport to tissues.

At tissue: the reverse occurs

Increased CO2 & H+ produced by tissues during metabolism \rightarrow shift curve to the right \rightarrow release/unload O2 from Hb to tissues.

Lung: high PO₂→ increased O₂ affinity & binding with Hb → left shift.
 Tissues: low PO₂ → decreased O₂ affinity & binding with Hb→ right shift.

Reminder: PCO₂ & H⁺ shift the curve to the right \rightarrow O₂ is released \rightarrow tissues get O₂.

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman,

Transport of O₂ in Dissolved State

- Only 2-3% of O_2 is transported in the dissolved state. (Tissue consume O_2 directly, and it depends on the PO₂ so higher alveolar PO₂ will increase the amount of O_2 carried in the dissolved state e.g. hyperbaric O_2 therapy as in CO poisoning).
- At normal arterial PO₂ (95 mmHg): ~ 0.29 ml of O_2 is dissolved in each 100 ml of blood.
- When the PO₂ of the blood falls to 40 mmHg in tissue capillaries: only 0.12 of O₂ remains dissolved.
- Therefore, 0.17 ml of O₂ is normally transported in the dissolved state to tissues per each 100 ml of blood.

Importance of O₂ dissolved: (Extremely important)

- \rightarrow Determines PO₂ in blood.
- → It is the form of Oxygen used directly by tissues.

Dissolve state is important to transport O_2 to places blood can't reach like cornea of eye & cartilage.

Female Slides Only

Shift of Dissociation Curve in Exercise

Exercise increases temperature, H^+ , 2,3 DPG \rightarrow shift the curve to the right.

Utilization Coefficient: percentage of blood that gives up its O₂ as it passes through tissues capillaries.

Pulse Oximetry

- Pulse Oximetry: a device that measures percent saturation of arterial blood (example: of the finger) using dual-wavelength spectrophotometry.
- Oxyhemoglobin & deoxyhemoglobin have different absorbance characteristics \rightarrow the
- machine calculates percent saturation from absorbance at two different wavelengths.
- Pulse oximetry measures arterial percent saturation. Why?
 - → Because arterial blood "pulses".
 - → Venous & capillary blood don't "pulse" → background absorbance from venous & capillary blood is subtracted out.
- Pulse oximetry does not directly measure PaO_2 . however knowing percent saturation \rightarrow estimating ($ieie_2$ from O_2 -hemoglobin dissociation curve.

Combination of Hb with CO Displacement of O_2 (CO poisoning)

CO combines with Hb at the same point on the Hb molecule as does O_2 .

The affinity of Hb to CO is very high (250 times) compared to O_2 , CO causes poisoning. (استنشاقه خطر جدًا)

CO binds with Hb about 250 times as much as O_2

CO combination with Hb \rightarrow left shift of the O₂-Hb curve.

 $CO + Hb \rightarrow$ carboxyhemoglobin

CO binds to Hb \rightarrow Hb is unable to bind with $O_2 \rightarrow$ hypoxia

Figure 5-23 Effect of carbon monoxide on the 02-hemoglobin dissociation curve. Carbon monoxide reduces the number of sites available for 02 binding to hemoglobin and causes a shift of the 02-hemoglobin dissociation curve to the left.

Transport of Carbon Dioxide in Blood

Formation of HCO³⁻& Chloride Shift

In tissues

 CO_{2} من الـcO من الـtissues، جزء من الـ CO_{2} من الـ $H_{2}CO_{2}$ وينتج RBCs وينتج RBCs وينتج بعدها رح يرتبط مع ماء وينتج carbonic anhydrase. بعدها رح يرتبط المساعدة الـ $H_{2}CO_{2}$ اللي بيطلع من الدم الـ $H_{2}CO_{2}$ اللي بيطلع من الدم ويتجه للرئة.

Dr's note: why is the formation of bicarbonate happens only in blood? Cuz it's contain the enzyme (carbonic anhydrase) that is not available anywhere else.

Chloride shift: when HCO_3 (weak acid - easy to dissociate) leaves the RBC \rightarrow Cl will enters (keep the negatively of RBC in tissue capillary.

Bicarbonate found in plasma acts as a buffer preventing pH change of blood.

In Pulmonary capillaries

إذا وصلت bicarbonate للرئة، لازم نرجع ال-أد وصلت BBC داخل ال-3 ${\rm CO}_2$ داخل ال-3 ${\rm RBC}_3$ (لأن فيها enzyme enzyme اسمه carbonic anhydrase) فيحصل escent tissues عكس العملية اللي حصلت في HCO عكس العملية اللي حصلت في HCO ينتج ${\rm HCO}_1^-$ مع ال-1 بمساعدة الإنزيم وينتج ${\rm HCO}_2^-$ اللي يتحلل الى ماء بواسطة ${\rm HCO}_2$. (dehydration)

The Haldane Effect

Bohr effect: effect of CO_2 on O_2 . **Haldane effect:** effect of O_2 on CO_2 .

Fused basal laminae

CO2 4

CO2

02

b) Oxygen pickup and carbon dioxide release in the lungs

CO₂ (dissolved in plasma)

 $CO_2 + H_2O \xleftarrow{} H_2CO_2 \xleftarrow{} HCO_2^- + H^+$

CO2 + HaO

-+ HbO2 + H+

CO₂ + Hb - HbCO₂ (Carbamino-

(dissolved in plasma)

Reverse

chloride

CI-

Blood plasma

 O_2 binds with Hb at lungs $\rightarrow CO_2$ is released into alveoli $\rightarrow CO_2$ transport is increased. (Availability of O_2 facilitated the transport of CO_2)

Binding of Hb with O_2 at the lung \rightarrow Hb becomes a stronger acid \rightarrow CO_2 is displaced from blood into alveoli.

Change in blood acidity during CO₂ transport:

Change (fall) of 0.04 unit in venous blood due to increased CO_2 in it:

- → Arterial blood pH: 7.41
- → Venous blood (higher PCO_2): 7.37

Dr's note: Venous blood is more acidic because it's contain CO₂

Respiratory Exchange Ratio

(Respiratory Quotient)

Comparison between Bohr-haldane effects

The **Bohr effect**, describes how carbon dioxide and H+ affect hemoglobin's affinity for oxygen.

The Bohr-Haldane effect

The **Haldane** effect, on other hand, describes how oxygen concentrations determine Hemoglobin's affinity for carbon dioxide.

Alveoli

HCO;

CO,

Q1:Which of the following is called Oxyhemoglobin ?

A-Dissolved O2 in blood	B-Bounded O2	C-Unbounded O2	D-CO2 in blood		
Q2:Which of the following causes the dissociation curve to shift to the right ?					
A-Decreased 2,3 DPG	B-Decreased temperature	C-Increased pH	D-increased H+ ions		
Q3:Which of the following happens when the dissociation curve shift to the left ?					
A-Loading of O2 on hemoglobin	B-Unloading of O2 on hemoglobin	C-Increase in the PCO2	D-Decreased pH		

1-B 2-D 3-A

Q4: What is the transport form of CO2 that has the highest percentage in the blood?

A-Bicarbonate	B-Carbaminohemoglobin	C-Carboxyhemoglobin	D-Sodium Cholride			
Q5:Which of the following is true regarding changes in oxygen transport related to anemia?						
A-Decreased 2,3 DPG	B-Decreased O2 content	C-Increased pH	D-increased H+ ions			

SAQs

Q1: During exercise a.What will happen to the O2-HB dissociation curve?

b.what are the factors of the change to the curve?

Q2: What is the formula for calculating oxygen content in blood?

A1: a.It shifts to the right.

b.Increased PCO2 and temperature and 2,3 DPG , decreased PH and O2-Hb affinity.

A2: Oxygen content = Hemoglobin concentration x 1.34 ml O2

Ahmad Addas

Abdulaziz Nasser

Saud Alsaeed

Abdullah Almutlaq

Talal Alrobaian

Khalid Al Tameem

Zyad Alshuhail

Abdulaziz Alobathani

Moath Alabdulsalam

Ibrahim Albabtain

Omar Alattas

Khalid Alkanhal

()

Leena Shagrani

() ()

) C

Î

Î

Ghala Alyousef

Ŷ

Rimaz Alhammad

Basma Al-ghamdi

Aljoharah Alyahya

Samiyah Sulaiman

Noreen Almarabah

Aram Alzahrani

Lina Aljameel

Layal Alkhalifah

Hessa Alamer

Aleen Muneif

Farah Aldriweesh

physiology.444ksu@gmail.com