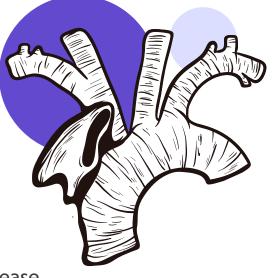


Lipoprotein metabolism

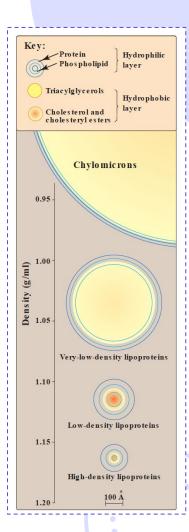
Editing File

COLOR INDEX: MAIN TEXT (BLACK) FEMALE SLIDES (PINK) MALE SLIDES (BLUE) IMPORTANT (RED) DR'S NOTE (GREEN) EXTRA INFO (GREY)

Helpful video by Ninja Nerd



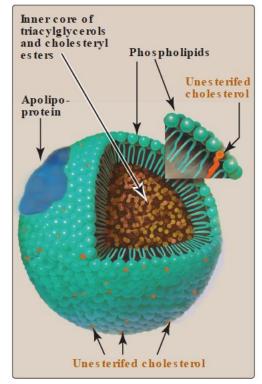
- **OI** Define and list the types, structure and composition of lipoproteins
- **O2** Understand various functions of lipoprotein particles
- **O3** Compare the functions of lipoprotein particles and their implications in disease
- **O4** Understand the metabolism of chylomicrons, VLDL and LDL particles
- **O5** Discuss the functions of lipoprotein lipase and its role in disease
- **06** List the diseases due to imbalance in the metabolism of lipoproteins


Characteristics of Lipoproteins

- **Ol** Lipids are hydrophobic molecules (Lipo: Lipid)
- **O2** Transported in plasma as lipoprotein particles (outside is protein which is hydrophilic like plasma and inside is transported lipid which is hydrophobic)
- **O3** Plasma lipoproteins are spherical macromolecular complexes of:
 - Lipids (transported part)
 - Specific proteins (apolipoproteins)
- **O4** (function of LPs): Lipoproteins keep lipid contents soluble while transporting them to and from the tissues

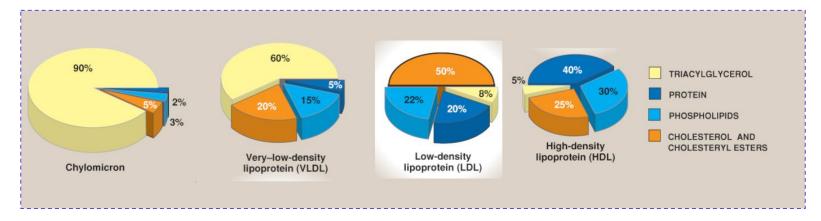
Types of Lipoproteins

Density refers to the protein content against the lipid content **Chylomicrons** – Lowest density (more fat), Largest Lipoproteins **VLDL** Very low density lipoproteins LDL Low density lipoproteins High density lipoproteins HDL Lipoproteins 10 E differ in: Lipid & Protein Size Density Site of origin composition


Compositions of lipoproteins

Ol Neutral lipid core (hydrophobic):

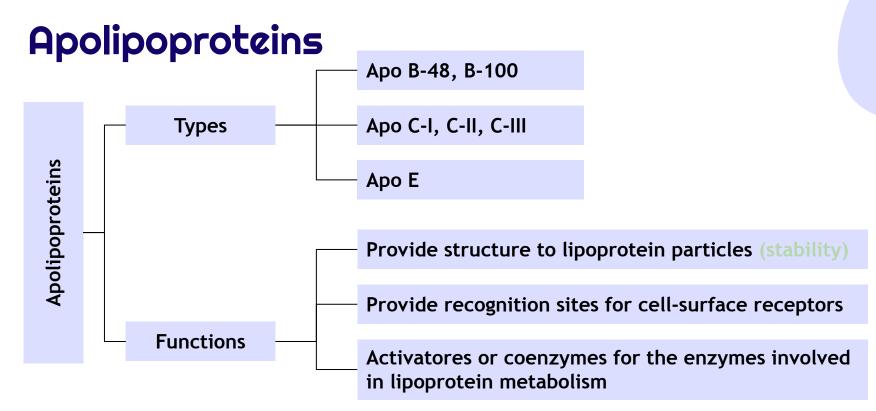
- ★ Triacylglycerols (TAGs)
- \star Cholesteryl esters


O2 Hydrophilic shell: (it is kind of a single layer membrane)

- ★ Amphipathic apolipoproteins
- ★ Phospholipids
- ★ Free cholesterol or Unesterified cholesterol (The orange dots in the picture, its function is to stabilize the Lipoprotein, without it the structure will dissolve)

Figure 18.14 Structure of a typical lipoprotein particle.

Cont. Compositions of lipoproteins



TAGs are mainly transported by:

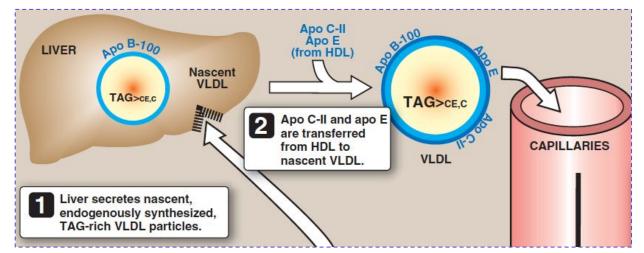
- ★ Chylomicrons (Dietary lipids, Exogenous, outside of the body)
- ★ VLDL

Cholesterol is mainly transported by: ★ LDL ★ HDL

Other than chylomicrons, Lipoproteins are endogenous

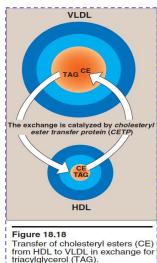
Chylomicrons

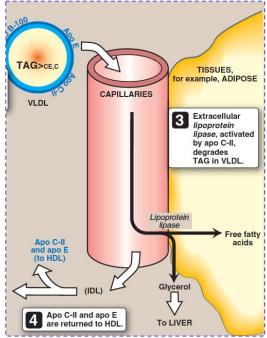
- Source of exogenous fat, they mainly carry dietary lipids as Triglycerides, the cholesterol content is very low
- Assembled in the intestinal mucosa cells (they're only produced after we eat a meal)
- Transport to peripheral tissue:
 - Dietary TAGs (90%)
 - Cholesterol
 - Fat-soluble vitamins
 - Cholesteryl esters
- The milky appearance of plasma after a meal is due to chylomicrons



VLDL

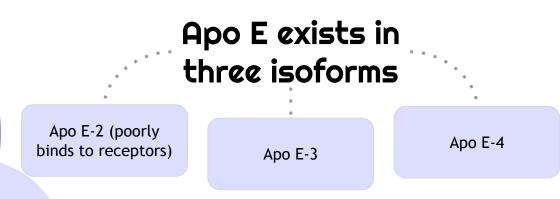
- VLDL & the rest of the particles are endogenous (produced inside the body)
- Produced and secreted and packaged by the liver
- Mainly composed of:
 - Mainly Endogenous TAGs (60%)
 - Some cholesterol (Free and esterified)
- Carry these lipids from the liver to peripheral tissues
- The function of these particles is to supply the whole body with these lipids through circulation after coming out of the liver
- The difference between Chylomicrons and VLDL is that Chylomicrons carry exogenous lipids and VLDL carry endogenous lipids
- Peripheral tissue degrade TAGs by lipoprotein lipase (LPL) enzyme which exist on the cell surface
- Imbalance in hepatic TAG synthesis and secretion of VLDL can lead to:
 - Obesity
 - $\circ \quad \text{Type 2 diabetes mellitus} \\$

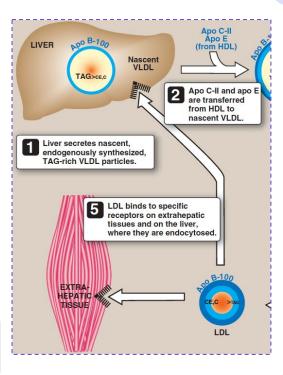

VLDL metabolism


- 1. Release from the Liver
- As Nascent particles containing:
 - TAGs and cholesterol
 - Apo B-100
- Obtain apo C-II and apo E from circulating HDL particles
- Apo C-II is required from activation of LPL

VLDL metabolism

- 2. Modification in the circulation
 - TAGs in VLDL are degraded by lipoprotein lipase (LPL)
 - VLDL becomes smaller and denser
 - Surface components (apo C and E) are returned to HDL
 - VLDL transfers TAGs to HDL in exchange for cholesteryl esters
 - This exchange is catalyzed by cholesteryl ester transfer protein (CETP)





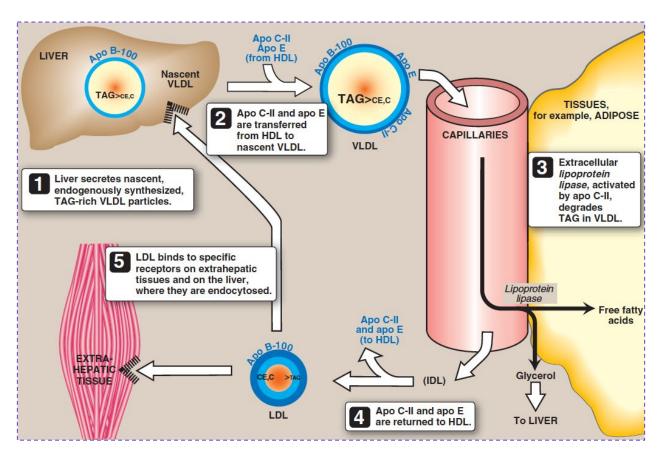
VLDL metabolism

- 3. Conversion to LDL
 - After modifications, VLDL is converted to:
 - LDL Apo E has poor binding so we tend to accumulate IDL
 - IDL intermediate density lipoprotein (taken up by liver cells through apo E)
 - VLDL remnants

APOE Clinical Correlation

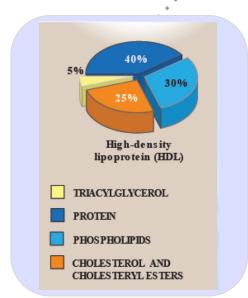
- Apo-E Genotype:
- your APO-E gene is the strongest and most prevalent(>50%) genetic risk factor for **Alzheimer's Disease**.
- There are 3 main allele variants
- (E2: Protective | E3: Neutral | E4: Detrimental)
- 2x ApoE4 Gene = 8x-12x fold increase risk in Alzheimer's Disease
- Some people test for it. But, there is no current interventions specific for Alzheimer's Disease other than lifestyle interventions.

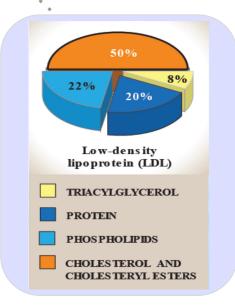
You can read More on APOE and AD here:

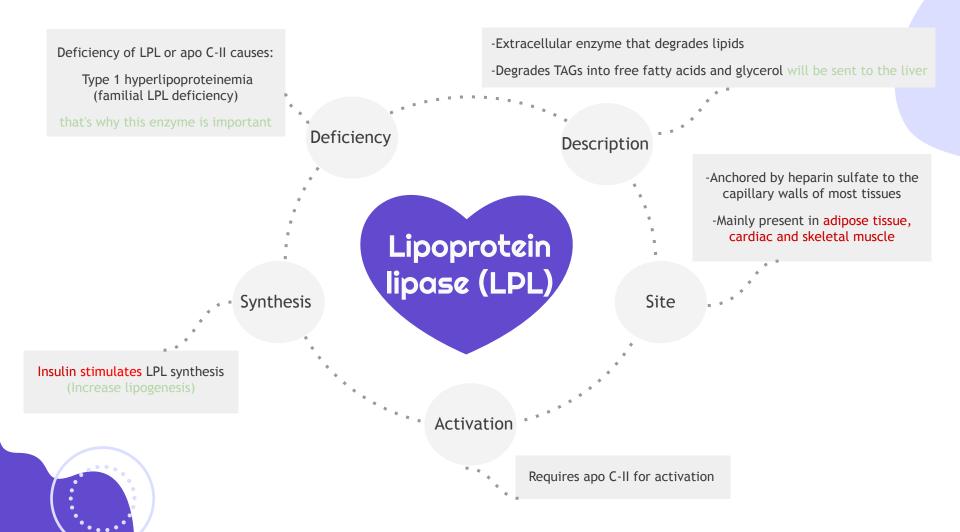

ApoE in Alzheimer's disease: pathophysiology and therapeutic strategies | Molecular Neurodegeneration

Recently, there has been a popular story where actor Chris Hemsworth (Thor) discovered he had 2x APOE4 Gene.

You can read more here: <u>Chris Hemsworth's APOE4</u> <u>Alzheimer's Gene | MedPage Today</u>


VLDL metabolism Overview




Low density lipoproteins (LDL) & High density lipoproteins (HDL)

(LDL) (Bad cholesterol) Check L3 (Lipoproteins and Atherosclerosis) to know why the terms "good and bad cholesterol" are inaccurate to use.		(HDL) (Good cholesterol)	
Produced from VLDL particles	Production	Produced in the liver and intestine	
 Mainly contains : cholesterol and cholesteryl esters Apo B-100 lipoprotein 	Contents	 Mainly contains: Protein, phospholipids, cholesterol, cholesteryl esters Apo A-1, C-2 and E lipoprotein 	
 Provides cholesterol to peripheral tissue LDL binds to cell surface receptors through Apo B-100 (receptor-mediated endocytosis) 	Functions	Take up cholesterol from peripheral tissues to the liver Reverse cholesterol transfer (HDL and LDL have opposite functions)	

Low density lipoproteins (LDL) & High density lipoproteins (HDL)

VLDL Diseases

Disease	About	Cause	Leads to
Hyp <u>o</u> lipoproteinemia	-	441 dr : (A=not or without ; beta= apo B) Abetalipoproteinemia is due to inability to load apo B with lipids	 you won't be able to synthesize your lipoproteins which are Few VLDLs and chylomicrons are formed TAGs accumulate in liver and intestine
Steatohepatitis	(Fatty liver disease) To much fat in the liver with will cause inflammation	Imbalance between: -TAG synthesis in the liver and -Secretion from the liver	Leads to accumulation of TAGs in the liver (fatty liver)
Type I hyperlipoproteinemia	A rare, autosomal recessive disease	Due to familial deficiency of LPL or its coenzyme (apo C-II)	-Causes excessive accumulation of chylomicrons in plasma (≥1000 mg/dl) (hyperchylomicronemia) -High fasting plasma TAGs are observed in these patients
Type III hyperlipoproteinemia	Also called familial dysbetalipoproteinemia , or broad beta disease	Individuals homozygous for apo E-2 are deficient in clearing: -Chylomicron remnants - IDL from the circulation	Leads to hypercholesterolemia and premature atherosclerosis

Q1:what is the lowest density lipoprotein but largest in size ?						
A- VLDL	B- HDL	C- chylomicrons	D- LDL			
Q2: Type I hyperlipoproteinemia is caused by :						
A- VLDL Overproduction	B- APOB deficiency	C- Apo CII deficiency	D- LPL overactivity			
Q3: Extracellular lipoprotein lipase activated by ?						
A- apo C-II	B- apo C-III	C- apo E	D- apo B-100			

Q1: Compared to HDL, LDL particles are characterized by which of the following criteria?					
A- They contain less protein	B- They contain mainly esterified cholesterol	C- They contain excess phospholipids	D- They contain Apo Al		
Q2: VLDL is produced in the with?					
A- Liver, Apo B-48	B- Intestinal mucosa, Apo B-48	C- Liver, Apo B-100	D- Intestinal mucosa, Apo B-100		
Q3: Where does the chylomicrons assemble ?					
A- Intestinal mucosal cells	B-peripheral tissue	C- liver	D- kidney		

SAQ

Q3: A patient presents with fatty deposition on his liver and is later diagnosed with steatohepatitis. Explain from a biochemical standpoint how was this caused?

A1:

There is an imbalance between Triglyceride Synthesis and Secretion in the liver which leads to the accumulation of lipids in the liver

Q2: Mention 2 of apolipoproteins function ?

A2: 1-Provide structure to lipoprotein particles 2-Provide recognition sites for cell-surface receptors

Q3: where can LPL be found ?

A3: Adipose tissue, cardiac and skeletal muscle

Bar Eyad Zubaidi

Osama Alotaibi 🛛 🖄 Mays Altokhais 🔞 Shadin Alabbas

🔞 Waleed Alanazi

🖄 Faris Alturaiki

🖄 Aseel Alanazi

Saleh Alotaibi

😥 Faisal Alghamdi 🛛 😥 Leena Shagrani