

L6: Glucose homeostasis

Color Index: Main Text Male's Slides Female's Slides Important Doctor's Notes Extra Info

Objectives

Define glucose homeostasis and the metabolic processes involved

Differentiate between different phases of glucose homeostasis

Discuss the primary sources of energy and major organs utilizing glucose during the five phases of homeostasis

Understand the role of hormones in maintaining glucose homeostasis

To be in touch: click on the icons

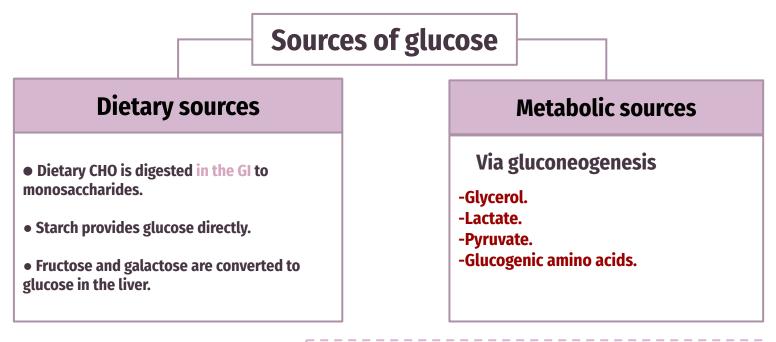
Biochemistry 443 team channel: <

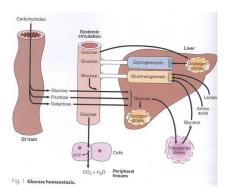
Academic Announcement channel: <

Editing File link:

Glucose homeostasis

A process that : Controls glucose metabolism and maintains normal blood glucose level in the body.


Glucose is a major source of body's energy.


The liver plays a key role in maintaining blood glucose level.

Blood glucose level is tightly controlled because the brain constantly needs glucose.

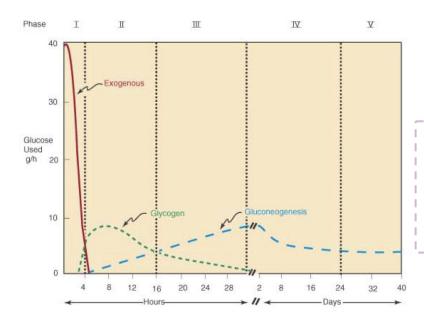
Severe hypoglycemia can cause coma and death.

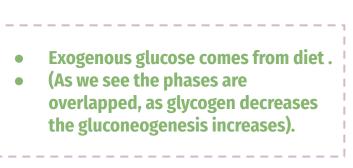
Chronic hyperglycemia results in glycation of proteins, endothelial dysfunction and diabetes mellitus.

Dr's explanation : 1- Lactate (not hypoxia) comes from the body tissue because of the absence of (pyruvate dehydrogenase) this enzyme is inhibited in the fasting state. 2- Glycerol comes from fatty acid oxidation.

3- Amino acids come from muscles.

N.B : gluconeogenesis can occur in the kidney but only in starvation.

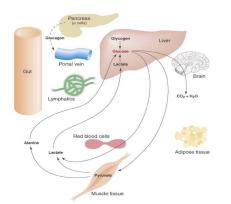

Phases of Glucose Homeostasis

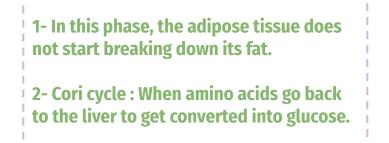

KB : Ketone Bodies

Phases of Glucose Homeostasis

Phase I	Phase II	Phase III	Phase IV	Phase V
Well-fed state	Glycogenolysis	Gluconeogenesis	Glucose, KB oxidation	Fatty acid, KB oxidation

	Origin of Blood Glucose	Tissue Using Glucose	Major Fuel of Brain
Phase I	Exogenous	All	Glucose
Phase II	Glycogen (major) Hepatic gluconeogenesis (minor)	All except Liver, Muscle and adipose tissue at diminished rates.	Glucose
Phase III	Hepatic gluconeogenesis (major) Glycogen (minor)	All except liver, Muscle and adipose tissue at rates intermediate between II and IV.	Glucose
Phase IV	Gluconeogenesis both Hepatic and Renal (only start in 4th)	Brain, RBCs, renal medulla. small amount by muscle. *Note that it's not deliver to adipose, because it starts using ketone bodies as brain fuel.	Glucose ketone bodies
Phase V	Gluconeogenesis both Hepatic and Renal	Brain at diminished rate, RBCs,renal medulla. RBC and renal medulla Cannot take ketone bodies as fuel	Ketone bodies Glucose

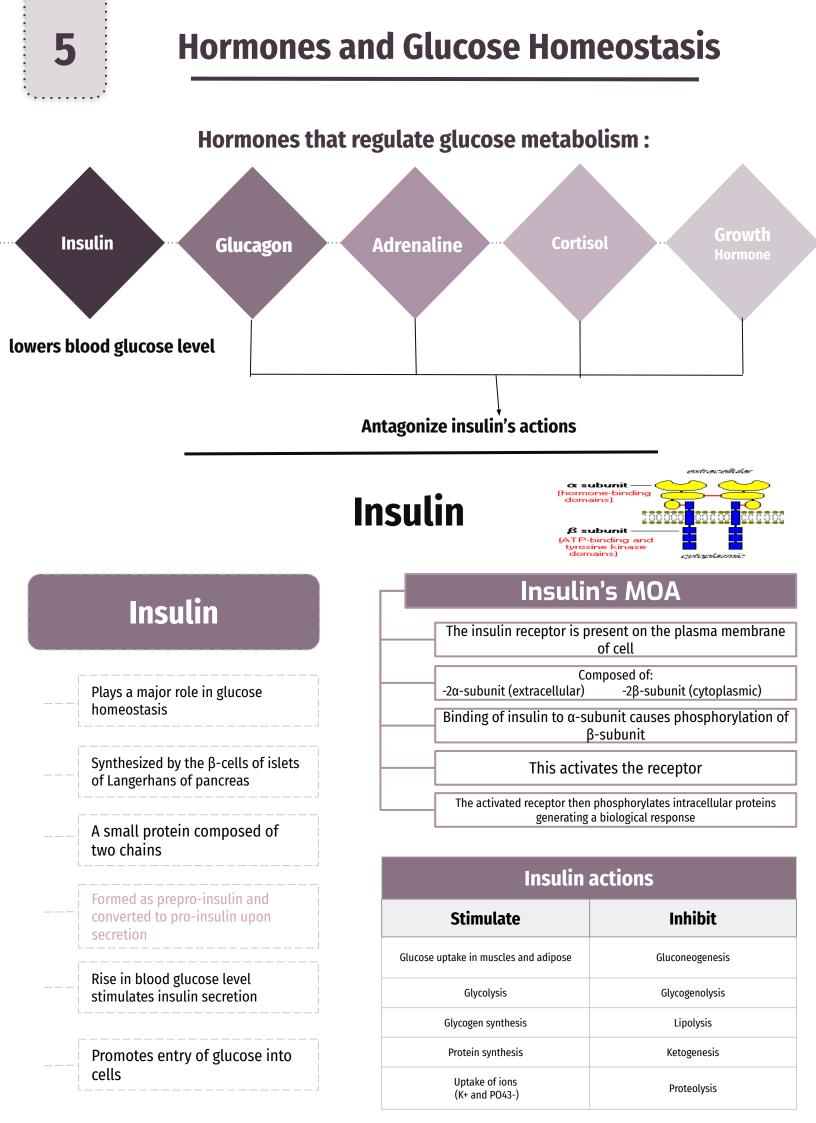


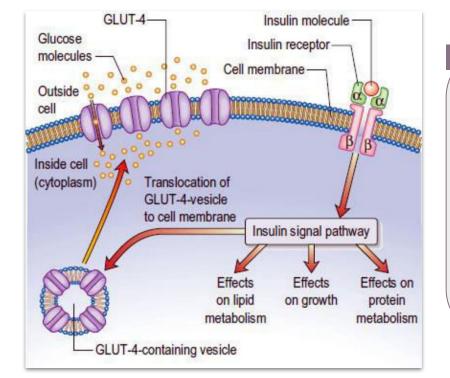



```
3
```

Phases of Glucose Homeostasis

Phase II Phase III Phase IV Phase I Phase V **Origin of glucose** Glucose is mainly supplied by dietary CHOs. Liver removes about 70% of glucose load after a CHO meal. - All body tissues use dietary glucose for energy in this phase. - Some glucose is converted to glycogen for storage in the liver (glycogenesis). Action - Excess glucose is converted to fatty acids and triglycerides in the liver. - These are transported via VLDL (very low density lipoproteins) to adipose tissue for storage. Gluconeogenesis and lipolysis is inhibited. - Cori cycle. (Lactate from muscle, and it convert to glucose in liver) Inhibited - glucose-alanine cycles. Alanine from muscle \rightarrow glucose (in liver) *No need for gluconeogenesis in phase 1 and it is inhibited by insulin. Phase III Phase I Phase IV Phase V Phase II Hepatic glycogenolysis and gluconeogenesis maintain blood glucose level in this **Origin of glucose** phase. Start during early fasting when dietary glucose supply is exhausted. Glycogenolysis and gluconeogenesis. Major source of blood glucose





Phases of Glucose Homeostasis

Phase I	Phase IIPhase IVPhase V					
Origin of glucose	Hepatic gluconeogenesis from lactate, pyruvate, glycerol and alanine maintains blood glucose level.					
Start	When glycogen stores in liver are exhausted (<within 20="" hours).<="" th=""></within>					
Major source of blood glucose	Gluconeogenesis.					
Duration	depends on: 1- Feeding status. 2- Hepatic glycogen stores. 3- Physical activity.					
Phase I	Phase II Phase III Phase IV Phase V					
Origin of glucose	Hepatic & Renal gluconeogenesis.					
Start	Several days of fasting leads to phase IV.					
Action	 Gluconeogenesis starts to decrease. FA oxidation increases KB accumulation. KBs enter the brain and muscle for energy production. Brain uses both glucose and KB for energy. 					
Phase I	Phase IIPhase IIIPhase IVPhase V					
Origin of glucose	Hepatic & Renal gluconeogenesis.					
Start	Prolonged fasting leads to phase V.					
Action	 Less dependence on gluconeogenesis. All body tissues mainly use FA and KB oxidation for energy production. Gluconeogenesis somewhat maintains blood glucose level in this phase. High KB concentration. And glucose levels inhibit proteolysis in muscle (conservation of muscle). When all fat and KBs are used up → body uses muscle protein to maintain blood glucose level. 					

Linda (Extra)

Insulin MOA (linda):

1. Insulin binds to the α subunits of the tetrameric insulin receptor, producing a conformational change in the receptor. The conformational change activates tyrosine kinase in the β subunits, which phosphorylate themselves in the presence of ATP. In other words, the β subunits autophosphorylate.

2. Activated tyrosine kinase phosphorylates several other proteins or enzymes that are involved in the physiologic actions of insulin, Phosphorylation either activates or inhibits these proteins to produce the various metabolic actions of insulin (eventually GLUT-4 translocate to the cell membrane).

Promotes glucose uptake into cell:

1- Glucose is diffused into cells through hexose transporters such as GLUT4.

2- GLUT4 is present in cytoplasmic vesicles.

3-Insulin binding to its receptor causes vesicles to diffuse into plasma membrane.

4-GLUT4 is inserted into the membrane.

5-Allowing glucose transport into the cell.

6-Brain and liver have non insulin dependent glucose transporter.

Insulin's MOA in decreasing blood glucose levels:

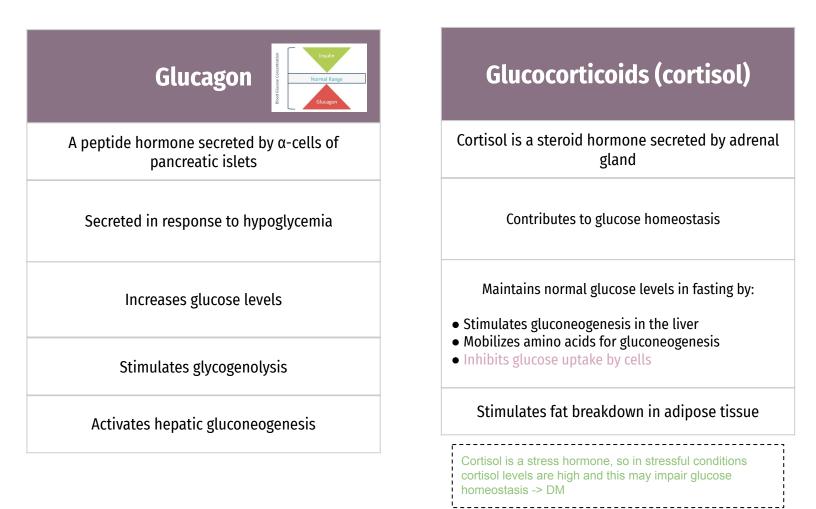
Stimulates glycogen synthesis.

Decreases blood glucose levels.

Increases glycolysis.

Stimulates protein synthesis.

Insulin deficiency causes diabetes mellitus.


Hyperinsulinemia is due to insulin resistance in:

- Diabetes mellitus
- Metabolic syndrome

(Insulin resistance = receptor defect or action defect)

Hormones that Antagonize Insulin's Action

Growth hormone

A protein hormone secreted by anterior pituitary gland

Maintains blood glucose levels by:

- Inhibiting insulin action
- Stimulating gluconeogenesis in the liver

Epinephrine

A catecholamine hormone secreted by adrenal gland

Stimulates lipolysis in adipose tissue when glucose blood levels fall

Promotes glycogenolysis in skeletal muscle

•Glucose homeostasis is a process that controls glucose metabolism and maintains blood glucose level in the body.

• There are five phases of glucose homeostasis- Phase I (well-fed state), Phase II (glycogenolysis).

• Phase III (gluconeogenesis), Phase IV (glucose, ketone bodies (KB) oxidation), Phase V (fatty acid (FA), KB oxidation).

• Hormones that regulate glucose metabolism include insulin (lowers glucose level) and glucagon (increases glucose level).

• Other hormone such as cortisol, growth hormone and adrenaline are known to antagonize the actions of insulin thus increases the blood glucose level.

All thanks to team442		Summary				
Glucose Homeostasis		A process that controls glucose metabolism and maintains blood glucose level in the body.				
Sources of Glucose		Dietary sources	Dietary CHOs are digested in the GI to monosaccharides.			
		Metabolic sources	Gluconeogenesis: Glycerol, Lactate, Pyruvate, Glucogenic amino acids.			
		Phases of Gluce	ose Homeostasis <mark>(Ver</mark>	y Importan	t !)	
	Start	Origin of glucose	Tissue Using Glucose	Major Fuel of Brain	Note	
Phase I	_	Dietary CHOs (Exogenous)	All	Glucose	 Some glucose is converted to glycogen for storage in the liver (glycogenesis). Excess glucose is converted to fatty acids and triglycerides in the liver, and these are transported via VLDL to adipose tissue for storage. Gluconeogenesis is inhibited: Cori and glucose-alanine cycles are inhibited. Insulin is active in this phase. 	
Phase II	Starts during early fasting when dietary glucose supply is exhausted.	- Glycogen (major) "Hepatic glycogenolysis" - Hepatic gluconeogenesis (minor)	All except Liver. Muscle, and adipose tissue at diminished rates.	Glucose		
Phase III	when glycogen stores in liver are exhausted (within 20 hours).	- Hepatic gluconeogenesis (major) - Glycogen (minor)	All except liver. Muscle and adipose tissue at rates intermediate between II and IV.	Glucose	depends on: - Feeding status. - Hepatic glycogen stores. - Physical activity.	
Phase IV	Several days of fasting	Gluconeogenesis both Hepatic + <mark>Renal (only</mark> start in 4th)	Brain, RBCs, renal medulla. small amount by muscle.	Glucose, ketone bodies	KB accumulation increase which enter brain for energy production. *Brain uses both glucose and KB for energy.	
Phase V	Prolonged fasting	Gluconeogenesis both Hepatic + Renal	Brain at diminished rate, RBCs, renal medulla.	Ketone bodies (mainly), Glucose	 Less dependence on gluconeogenesis. All body tissues mainly use FA and KB oxidation for energy production. Gluconeogenesis somewhat maintains blood glucose level in this phase. High KB conc. and glucose levels inhibit proteolysis in muscle. When all fat and KBs are used up → body uses muscle protein to maintain blood glucose. 	

Hormones and glucose homeostasis

normones and glacose nomeostasis					
	Overview	Synthesized by	The β -cells of islets of Langerhans of pancreas.		
		Туре	Peptide hormone.		
		Receptor	Tyrosine kinase. (Composed of: 2α -subunit (extracellular) and 2β -subunit (cytoplasmic))		
	Stimuli	↑ Blood glucose level (hyperglycemia)			
Insulin	MOA	Binding of insulin to α -subunit causes phosphorylation of β -subunit (autophosphorylated) \rightarrow activates the receptor \rightarrow phosphorylates intracellular proteins generating a biological response.			
	Actions	Stimulate	- Glucose uptake in muscles and adipose tissue. (GLUT4) - Glycolysis Glycogen synthesis Protein synthesis. - Uptake of ions (especially K+ and PO4 3-)		
		Inhibits	- Gluconeogenesis Glycogenolysis Lipolysis. - Ketogenesis Proteolysis		
	Note	Brain and liver have non-insulin dependent glucose transporter.			
	Disorder	Insulin deficiency	Diabetes mellitus (type 1)		
	Disorder	Hyperinsulinemia	Due to insulin resistance in: diabetes mellitus (type 2) or Metabolic syndrome.		
		Synthesized by	The α -cells of islets of Langerhans of pancreas.		
	Overview	Туре	Peptide hormone.		
Glucagon		Receptor	Adenylate cyclase- cAMP		
	Stimuli	↓ Blood glucose level (hyperglycemia)			
	Actions	- Stimulates glycogenolysis Activates hepatic gluconeogenesis.			
	Overview	Synthesized in	Zona fasciculata of adrenal cortex.		
		Туре	steroid hormone.		
Cortisol		Receptor	Intracellular receptor.		
	Action	 Stimulates gluconeogenesis in the liver, mobilizes amino acids for gluconeogenesis, and Inhibits glucose uptake by cells. Stimulates fat breakdown in adipose tissue. 			
		Synthesized by	Somatotrops in anterior pituitary gland.		
Growth	Overview	Туре	Peptide hormone.		
hormone		Receptor	Tyrosine kinase.		
	Action	Inhibiting insulin acti	nhibiting insulin action and stimulating gluconeogenesis in the liver.		
	Overview	Synthesized in	Adrenal medulla glands.		
		Туре	Amine Hormone.		
Epinephrine		Receptor	Adenylate cyclase- cAMP and Calcium or phosphatidylinositol.		
	Action		in adipose tissue when glucose blood levels fall. olysis in skeletal muscle.		

Test Yourself!

MCQs	Answers: C-A-C-D	
Q1: 1- Which structure plays a key role in ma A. Intestines B. Kidney C. Liver D. Brain	intaining blood glucose level?	
 Q2: When Does Phase III takes place? A. glycogen stores in liver are exhausted B. Dietary glucose supply is exhausted C. Prolonged fasting D. Early Fasting 		
 Q3: Which one of the following does the ins A. Glycolysis B. Glycogen synthesis C. Glycogenolysis D. Protein synthesis 	ulin Inhibits?	
Q4: What is the organ that has non insulin d A. Brain B. Liver C. Kidney D. A&B	ependent glucose transporter?	
SAQs		
Q1: What are the complications of chronic h glycation of proteins, endothelial dysfunctio		
Q2: What are the sources of Glucose?		:

: -Dietary sources: Dietary CHO is digested in the GI to monosaccharides □, Starch provides glucose : directly □ Fructose and galactose are converted to glucose in the liver.

-Metabolic sources: (via gluconeogenesis): Glycerol, lactate, pyruvate, glucogenic amino acids.

Q3: How does Glucagon contribute in maintaining blood glucose? Stimulates glycogenolysis, Activates hepatic gluconeogenesis.

Yazeed AlSulaim

Almaymoni

Team Members

- Faisal AlShowier
- Mohammed AlRashed
- Abdulrahman AlOmar
 - 🕅 Mohammed AlEssa
- Mohammed AlSalamah
- Mohammed AlArfaj
- Hamad AlZomaia
- Talal AlGhadir
- Faisal AlZuhairy
- Abdulmalik AlShathri
- Abdulrahman AlOsleb
- Abo Owayed
- Yazan AlAhmari
- Fahad AlMughaiseeb
- Faris AlZahrani
- Khalid AlSobei

- Razan alsoteehi
- Razan Alaskar
- Haya Alzeer
- Dana A Alkheliwi
- Lama Hazzaa
- Afnan Alahmari
- Shaden Alhazzani
- Wasan Alanazi

- Remas Aljeaidi
- Jana Almutlaqah