Body Cations: K and Ca

Dr. Riyadh Al Sehli, MBBS, FRCPC
Transplant Nephrologist
Medicine 341

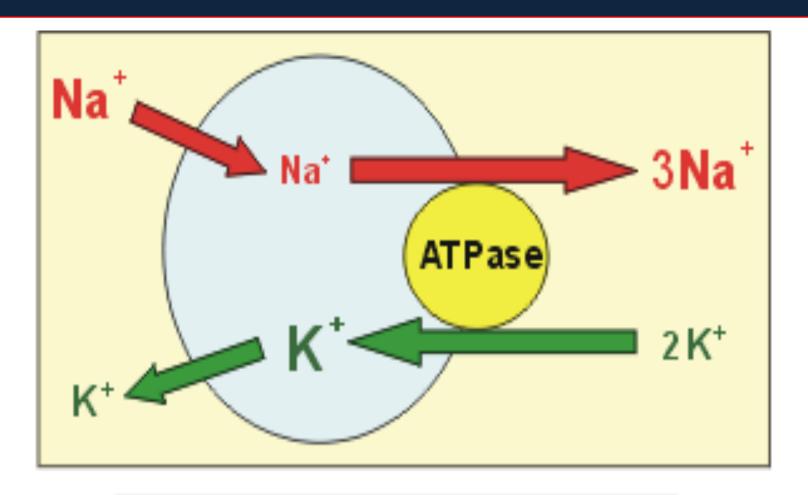
POTASSIUM

- Where does <u>K</u> come form?
- How much <u>K</u> do we eat every day?
- How do we loose the K?
- Where does K in the body live?
- How does K move?
- Is <u>K</u> important?
- What keeps K in normal range?
- What happens if <u>K</u> level is abnormal?
- What causes high <u>K</u>?
- What causes low K?

Where does **K** come form?

- Depending on diet, the normal daily intake can vary
- Fruits, potatoes, beans, and grains
- High-fat diets usually contain low amounts of potassium
- Average daily intake approximately 50 to 100 mmol

Table 1 Potassium content of select Foods and drinks	Potassium content (mmo
1 small banana (85 g)	8.6
Blueberries (100 g)	1.9
White mushrooms (75 g)	8.1
Broccoli, cooked (75 g)	5.8
Green beans, cooked (75 g)	3.9
Onions, cooked (75 g)	1.5
French fries (150 g)	17.7
Parboiled rice (150 g)	2.2
Spaghetti, without egg (150 g)	2.3
Orange juice (200 ml)	7.9
Milk, full fat (200 ml)	7.7
Coca Cola (200 ml)	0.1
Potato crisps (20 g)	5.1
Milk chocolate bar (20 g)	2.4
White chocolate (20 g)	1.8
Wine gums (20 g)	1.8


How do we loose **K**?

- Renal clearance
- primary mechanism
- ➤ Very efficient until GFR < 30 ml/min
- Intestinal excretion
- ➤ Only handles 10 % of the daily K load
- ➤ Efficiency can be enhanced in renal failure but it is variable form one person to another

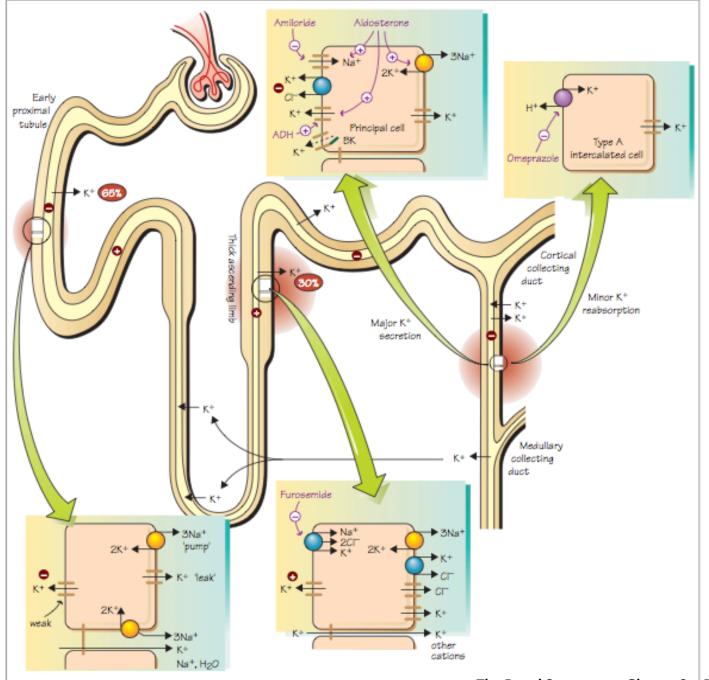
Where does **K** live in the body?

- Total body K is approximately 50 mmol/kg body weight
- K is the most abundant intracellular cation
 (100- 150 mmol/l) → 98 % of total body K
- Extracellular K concentration (3.4 5.5 mmol/L) → 2% of total body K

What keeps the IC K high?

- Insulin, Beta agonists enhance the pump function
- Beta Blockers inhibit the pump function

What keeps EC K low?


- The Na/K ATPase pump
- Renal clearance: requires normal GFR and normal aldosterone axis
- Intestinal excretion

What happens when we eat **K**?

- Oral K intake is initially absorbed in the intestine and enters portal circulation
- increased ECF K stimulates insulin release
- insulin facilitates K entry into intracellular compartment by stimulating cell membrane Na/K ATPase pump
- The transient rise in serum K stimulates renal and intestinal clearance of extra K

In order to Keep serum K in normal range, we need:

- Normally functioning Na/K ATPase pump
- 2. intact renal response

The Renal System at a Glance, 3e. By Chris O'Callaghan

Why is **K** important?

- Maintains electrical gradient across cell membranes i.e.
- resting membrane potential essential for generation of action potential
- Essential for intracellular metabolism e.g protein synthesis

What happens of **K** level is abnormal?

- Skeletal muscle dysfunction: weakness and paralysis
- Cardiac cell irritability: arrhythmia

NA/K ATPase dysfunction

- -B blockers
 - -Digoxin
- -**V**Insulin

Massive Cell breakdown

- -Rhabdomyolysis
- -Tumor lysis syndrome

Hyperkalemia

[K]>5.5

Impaired Renal function

Aldosterone axis dysfunction

- Adrenal deffiency
- -Aldosterone resistance

Can you eat too much **K**?

- If GFR is normal, renal clearance of K has a huge adaptive capacity
- K intake is restricted only if:
- GFR is reduced
- existing aldosterone axis dysfunction
- Na/K ATPase is not efficient (blocked by drugs, Insulin ♥)

- Malnutrition
- -eating disorders

Rapid transcellular shift

- -Insulin therapy
- Periodic paralysis

Hypokalemia

[K] < 3.4

-Diuretics

-too much aldosterone

↑Intestinal loss

-Diarrhea

-Laxative abuse

How to raise **K** level?

- Stop the loss
- Replace lost K with K (PO or IV if rapid correction is urgently needed)

How to lower K level?

- Reduce Cardiac muscle irritability with Ca gluconate (only if EKG changes)
- Push K into cells: Insulin, Beta agonists
- Remove the K load
- > Through the kidney: diuretics, dialysis
- Through the gut: Laxatives, K chelation(Caresonium), Patiromer, Zerconium

Calcium balance

Calcium

- Where does Ca come form?
- How much <u>Ca</u> do we eat every day?
- How do we loose the Ca?
- Where does <u>Ca</u> in the body live?
- How does Ca move?
- Why is <u>Ca</u> important?
- What keeps Ca in normal range ?
- What happens if <u>Ca</u> level is abnormal?
- What causes high <u>Ca</u>?
- What causes low Ca?

Where does Ca come from?

Diet: 1000 – 1500 mg /day in average

Total body Ca = 1000 g

Where does Ca live?

- The vast majority of total body calcium (99%) is present in the skeleton
- Non-bone calcium represents 1% of total body calcium
- √ free ions (51%)
- Jiee 1011s (3170)✓ protein-bound complexes (40%)

✓ ionic complexes (9%) [calcium phosphate, calcium carbonate, and calcium oxalate]

Why Ca is important?

- Bone Ca
- ✓ skeletal strength
- √ dynamic store

- Non-Bone Ca
- ✓ extra- and intracellular signaling
- ✓ nerve impulse transmission
- ✓ muscle contraction

What keeps Ca in balance?

- Total intake
- Rate of intestinal absorption
- Intestinal excretion
- Renal reabsorption
- Renal excretion
- Bone turnover

All these parameters are controlled by

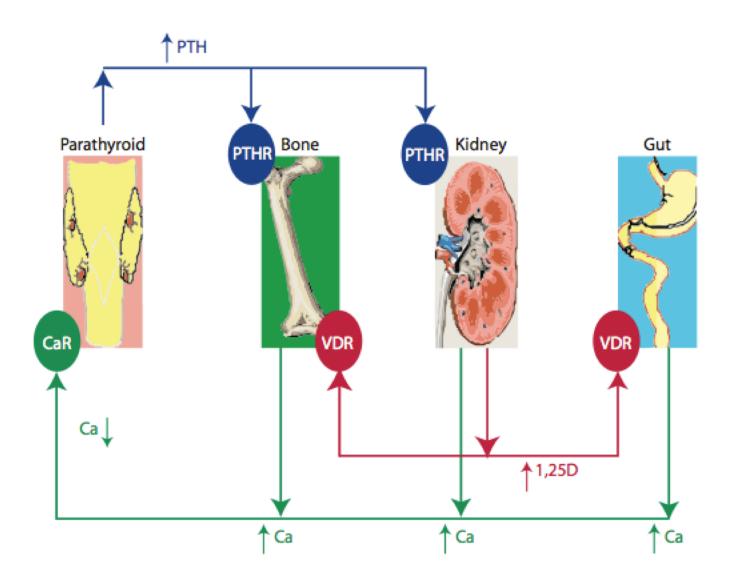
1- PTH

2- Active Vitamin D

3-Serum Ionized Ca level

PTH is a **hyper**-calcemic hormone

Release of Ca form bones (bone resorption)


Renal absorption of Ca

Activates Vitamin D in the kidney

Active Vitamin D is also hyper-calcemic

Intestinal absorption of Ca

Bone resorption

Hormonal mechanisms maintain narrow physiologic range of 10%.

What can go wrong?

- Oral intake
- Intestinal absorption
- Renal reabsorption
- Renal excretion
- Intestinal excretion
- Bone turnover

PTH

Active Vitamin D

- Increased intake
- Increased Vit D

↑Renal reabsorption

- Hyperparathyroidism
 - -Thiazide diuretics

Hypercalcemia

↑Bone resorption

-Osteoclastic bone metastasis

-Immobilization

↑PTH

- -Primary hyperparathyroidism
- -Multiple Endocrine Neoplasia

-Intoxication

Clinical Manifestations of Hypercalcemia

Renal "stones"

Nephrolithiasis

Nephrogenic diabetes insipidus

Dehydration

Nephrocalcinosis

Skeleton "bones"

Bone pain

Arthritis

Osteoporosis

Osteitis fibrosa cystica in

hyperparathyroidism (subperiosteal

resorption, bone cysts)

Gastrointestinal "abdominal moans"

Nausea, vomiting

Anorexia, weight loss

Constipation

Abdominal pain

Pancreatitis

Peptic ulcer disease

Neuromuscular "psychic groans"

Impaired concentration and memory

Confusion, stupor, coma

Lethargy and fatigue

Muscle weakness

Corneal calcification (band

keratopathy)

Cardiovascular

Hypertension

Shortened QT interval on

electrocardiogram

Cardiac arrhythmias

Vascular calcification

Other

Itching

Keratitis, conjunctivitis

Untestinal absorption

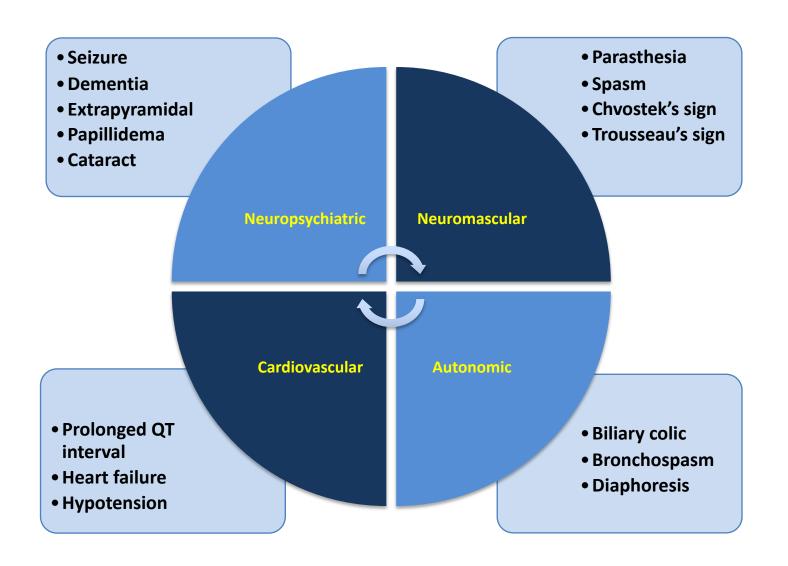
- Decreased intake
 - -mal-absorption
- -Small bowel resection
 - Vit D deficiency

♥Renal reabsorprtion

- hypo-parathyroidism
 - -Loop diuretics
 - -Tubular defects

Hypocalcemia

Bone remodling


-Hungry bone syndrome

ФРТН

- hypoparathyroidism

- Renal failure

Thank You