Approach to Acid Base

Nephrology

Introduction

 pH in the body is tightly regulated for normal physiology and cell function (proteins denature if they are in abnormal pH)

• Normal Arterial pH 7.36 – 7.44

pH equation

- pH= 6.1 + log [HCO3/(0.03xpCO2)]
- HCO3 measured in meq/L
- pCO2 measured in mmHg

H₂O equation

• CO2 + H2O \leftarrow > H2CO3 \leftarrow > HCO3 + H

Regulation and Buffer systems

Definitions

<u></u>	
Metabolic acidosis	Process that primarily reduces bicarbonate: Excessive H ⁺ formation e.g. lactic acidosis, ketoacidosis Reduced H ⁺ excretion e.g. renal failure Excessive HCO ₃ ⁻ loss e.g. diarrhoea
Metabolic alkalosis	Process that primarily raises bicarbonate: Extracellular fluid volume loss e.g. due to vomiting or diuretics Excessive potassium loss with subsequent hyperaldosteronism
Respiratory acidosis	Process that primarily causes elevation in PaCO ₂ : Reduced effective ventilation e.g. many chronic respiratory diseases or drugs depressing the respiratory centre
Respiratory alkalosis	Process that primarily causes reduction in PaCO ₂ : Increased ventilation e.g. in response to hypoxia or secondary to a metabolic acidosis

Approach

Step 1.

- Take a thorough history and physical examination, look for clues that may lead to the abnormalities in pH
 - Vomiting
 - Diarrhea
 - Hypoventilation
 - Respiratory disease
 - Medications (laxatives, diuretics, etc)
 - Diabetes

Vomiting for example, causes loss of acid and gastric contents, which suggests development of alkalosis

• etc

- Look at the pH:
- Determine if this is
 - Normal 7.35 7.45 (No abnormality or mixed acidosis and alkalosis)
 - Low <7.35 (acidemic)
 - High >7.45 (alkalemic)

Step 3 - a

• Determine the primary abnormality that is causing the abnormal pH

If the pH is acidemic (<7.35), then look for
Low HCO₃ (Metabolic) or High PCO₂ (Respiratory)

- If the pH is alkalemic (>7.45), then look for
 - High HCO₃ (Metabolic) or Low PCO₂ (Respiratory)

Step 3 - b

- If pH is normal, rule out mixed acidosis and alkalosis
 - Look for high or low PCO₂
 - Look for high or low HCO_3
- Low PCO2 suggests respiratory alkalosis
- High PCO2 suggests respiratory acidosis
- Low HCO₃ suggests metabolic acidosis
- High HCO₃ suggests metabolic alkalosis

Determine what is being mixed

- After determining the primary abnormality, check for compensation
- Compensation is the mechanism by which the body adapts to either acidosis or alkalosis, it will fully correct the abnormality
- For example
 - A patient has diabetic ketoacidosis, pH is 7.29, HCO3 is 15
 - Expected PCO2 by using Winter's formula
 - $PCO2 = 1.5 \times HCO3 + 8 (\pm 2)$

 $= 1.5 \times 15 + 8 = 30.5$

So you expect the PCO2 in this patient to be in the range of 28.5–32.5

- If the PCO2 in this patient is higher than $32.5 \rightarrow$ consider additional respiratory acidosis
- If the PCO2 in the patient is lower than 28.5 \rightarrow consider additional respiratory alkalosis

Primary Disorder Metabolic Acidosis

Metabolic Alkalosis Acute Respiratory Acidosis

Chronic Respiratory Acidosis

Acute Respiratory Alkalosis Chronic Repsiratory Alkalosis

Compensation calculations

Expected Compensation

 \downarrow PaCO₂ = 1.2 x Δ HCO₃ or $PaCO_2 = 1.5 \times HCO_3 + 8 \pm 2$ or PaCO₂ ~ last two digits of pH. \uparrow PaCO₂ = 0.7 x Δ HCO₃ \uparrow HCO₃ = 0.1 x Δ PaCO₂ \uparrow HCO₃ = 0.35 x Δ PaCO₂ also \downarrow pH = 0.003 x \triangle PaCO₂ \downarrow HCO₃ = 0.2 x Δ PaCO₂ \downarrow HCO₃ = 0.4 x Δ PaCO₂

Albumin is the main unmeasured anion To overcome the effects of the hypoalbuminemia on the AG, the corrected AG can be used which is AG + (0.25 X (40-albumin) expressed in g/L

Calculate the anion gap (AG)

Delta ratio

- Delta ratio = (change in anion gap) / (change in bicarbonate)
- (The normal anion gap is assumed to be 12, and the normal $HCO_{\rm 3}$ is assumed to be 24.)
- Interpretation of the generated ratio:
- 0.4 = normal anion gap metabolic acidosis
- 0.4-0.8 = mixed high and normal anion gap acidosis exists.
- 0.8-1.0 = purely due to a high anion gap metabolic acidosis
- 1.0-2.0 = still purely a high anion gap metabolic acidosis
- Over 2.0 = high anion gap acidosis with pre-existing metabolic alkalosis

Case 1

- 40 yo gentleman presenting to ER with coma labs : pH
 7.14/ pCO2 15; Na 138/ K 6.4/ Cl 100/ HCO3 5; BS 6/
 Urea 7/ S- OSM 340/ ETOH 0/ALB 40
- Funduscopic showed optic neuritis
- How do you approach the differential of this acid base disorder?

Answer

- 1. Acidosis or alkalosis ACIDOSIS
- 2. Metabolic or respiratory- METABOLIC
- 3. Compensation appropriate- YES
- 4. Anion gap HIGH (138 105 =23)
- 5. Δ gap = Δ HCO3 YES
- 6. Osmolar gap YES (340 289 = 51)

• Corrected anion gap = 2.5 X (4-albumin)

Case 2

- An elderly man present with tachypnea, diarrhea and weakness labs pH 7.24/ pCO2 24; Na 140/ K 6.7/ Cl 120 / HCO3 10; urine pH 5.0/ U Na 40/ U K 20/ U Cl 50
- How do you approach the differential of this acid base disorder?

Answer

- 1. Acidosis or alkalosis ACIDOSIS
- 2. Metabolic or respiratory- METABOLIC
- 3. Compensation appropriate YES
- 4. Anion gap NORMAL (10)
- 5. Δ gap = Δ HCO3 YES
- 6. Osmolar gap NONE

Urine Anion Gap

- HCO3 is either resorbed (prox) or regenerated (distal)
- To regenerate HCO3 NH4 is formed distally
- In an acidic urine Na+K+NH4 = Cl
- NH4 can not be measured therefore
 - Cl > Na+K if NH4 is present \rightarrow Normal DISTAL FX
 - If Cl < or = Na+K then distal urinary acidification is impaired (UAG abnormal)

Ammonium Secretion

NH4 response to acid load

Kidney regulation

Urine Anion Gap

- Urine Anion Gap the urine anion gap is useful in distinguishing disorders with normal ammonium excretion from those with abnormal excretion
- Normal UAG Proximal RTA or non renal acidosis (diarrhea etc.) (Cl > Na + K)
- Abnormal UAG CKD (lack of NH4 production), distal RTA Type I and IV or aldosterone deficiency) (Cl \leq Na + K)

Hyperchloremic Metabolic Acidosis Normal Urine NH4 (Cl > Na + K)

- This is due to HCO3 loss with normal distal tubular function
- GI loss of HCO3 due to diarrhea, urinary diversion or pancreatic fistulae
- Renal proximal RTA (type 2) leads to renal HCO3 loss with normal distal regeneration.
- May be associated with other proximal defects (Fanconi's), hypergammaglobulinemia, drugs (toluene, toperimate, zonisamide, tenofovir, azetazolamide) or multiple myeloma

Hyperchloremic Metabolic Acidosis Abnormal Urine NH4

 Classic Distal - a defect in the proton pump leads to a U pH >5.5 and acidosis (Type 1) (ampho B, HyperPTH, Sjogren's, medullary sponge kidney Hyperkalemic Distal - a defect in the aldo sensitive collecting duct leads to acidosis and hyperkalemia with preserved renal acidification (Type 4) (obstruction , aldo resistance) NH3 Defect - CKD leads to abnormal NH3 production with preserved urinary acidification (GFR < 30)

Non Anion Gap Acidosis

Defect	U pH	UAG	K (serum)	GFR
Proximal RTA (II)	< 5	NI	Low	nl
Distal RTA (I)	> 5	Low	Low	NI
Distal RTA (IV)	< 5	Low	High	NI to low
CKD	< 5	Low	NI to high	< 30

Case 3

- A normotensive body builder presents with weakness
- Labs : pH 7.54/ pCO2 45; Na 140/ K 2.8/ Cl 95/ HCO3 38;
- U CI 50 U Na 70
- Repeat U Cl < 20
- How do you approach the differential of this acid base disorder?

Answer

- 1. Acidosis or alkalosis ALKALOSIS
- 2. Metabolic or respiratory METABOLIC
- 3. Compensation appropriate YES
- 4. Anion gap NORMAL (7)
- 5. Δ gap = Δ HCO3 YES
- 6. Osmolar gap NONE

Cl responsiveness

- Generation loss of HCl from kidneys or Gl tract
- Maintenance because of prerenal state, hyperaldosteronism, and hypokalemia the body is unable to excrete HCO3
- Cl responsive when Cl is given it will shut off the maintenance phase and allow the kidney to excrete HCO3 by restoring volume and normalizing aldosterone production
- Cl unresponsive even when Cl is given it will not shut off aldosterone production

Cl responsiveness

- When NaCl and KCl are given they restore volume and replete K and Cl shutting off aldosterone production
- This plus the correction of the prerenal state allow the kidneys to excrete excess HCO3
- Treatment administration of NaCl and KCl

Maintenance of Metabolic Alk

Cl responsive

- Diuretic alkalosis U Cl < 20 after diuretics are stopped
- Chloridarrhea congenital or villous adenoma
- Posthypercapnic usually with chronic respiratory acidosis
- Gastric alkalosis hypokalemia due to renal K wasting
- Milk Alkali hypercalcemia, AKI, and alkalosis Cystic Fibrosis – skin Cl loss

Cl unresponsive

- This group of disorders is all have elevated aldosterone or defects in kidney
- However, this is not volume (NaCl) responsive but rather volume independent
- Administration of NaCl will not inhibit aldo nor will it correct the prerenal state
- Treatment diamox, HCl, spironolactone