Chronic Kidney Diseases

Dr. Mohammad Alkhowaiter, MD, MSc Consultant Nephrologist

To be able to:

- Define and classify chronic kidney disease into stages
- To realize the impact of such classification
- To list the different causes (risk factors) of CKD
- To know the common complications of uremia
- To outline the main management plan in CKD

Definition of CKD

 Persistent damage (structural or functional) ≥ 3 months with or without reduced GFR

Or

GFR < 60 mL/min/1.73 m² for ≥ 3 months with or without kidney damage

Classification of CKD

GFR categories in CKD				
GFR category	GFR (ml/min per 1.73 m ²)	Terms		
G1	≥90	Normal or high		
G2	60-89	Mildly decreased*		
G3a	45–59	Mildly to moderately decreased		
G3b	30-44	Moderately to severely decreased		
G4	15–29	Severely decreased		
G5	<15	Kidney failure		

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.

*Relative to young adult level.

In the absence of evidence of kidney damage, neither GFR category G1 nor G2 fulfill the criteria for CKD.

Classification of CKD

Albuminuria categories in CKD						
	AER	ACR (approximate equivalent)				
Category	(mg/24 h)	(mg/mmol)	(mg/g)	Terms		
A1	<30	<3	<30	Normal to mildly increased		
A2	30–300	3–30	30–300	Moderately increased*		
A3	>300	>30	>300	Severely increased**		
Abbreviations: ACR, albumin-to-creatinine ratio; AER, albumin excretion rate; CKD, chronic kidney disease. *Relative to young adult level. **Including nephrotic syndrome (albumin excretion usually >2200 mg/24 h (ACR > 2220 mg/g; > 220 mg/mmol)).						

Classification of CKD

GFR and ACR categories and risk of ACR categories (mg/mmol), description and adverse outcomes range <3 3-30 >30 Normal to Moderately Severely mildly increased increased increased A1 A2 A3 No CKD in ≥90 **G1** GFR categories (ml/min/1.73m²), description and range the absence Normal and high of markers of kidney 60-89 G2 damage Mild reduction related to normal range for a young Increasing risk adult 45-59 G3a¹ Mild-moderate reduction 30 - 44G3b Moderate-severe reduction 15-29 G4 Severe reduction <15 G5 **Kidney failure** ➔ Increasing risk

Classification of chronic kidney disease using GFR and ACR categories

Green:low riskYellow:moderate riskOrange:high riskRed:very high risk

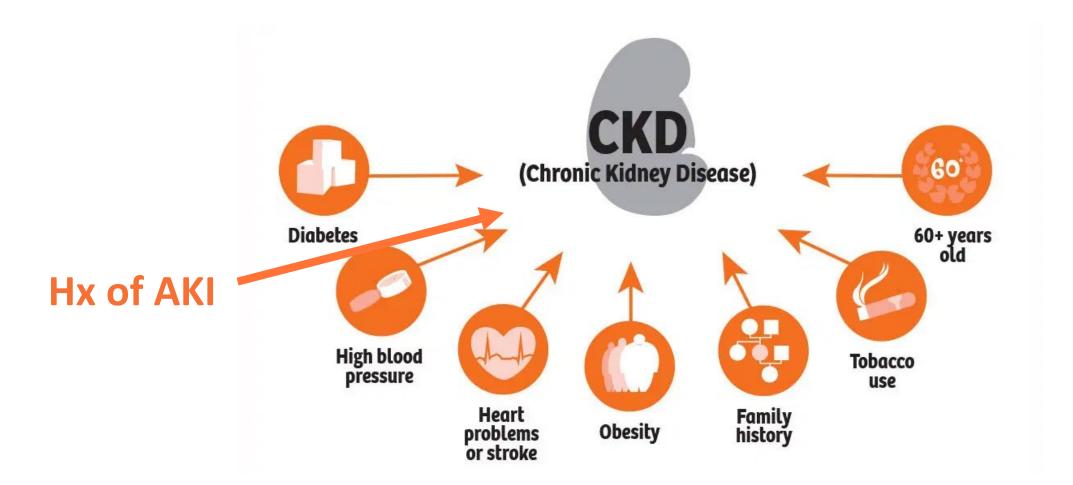
Importance of classification

- Determine the risk of progression and that would have an impact on the clinical care:
 - No. visits
 - Frequency of blood work
 - Workup for cardiac diseases
 - Avoiding contrast

Risk factors for CKD

• DM

• HTN



diabetes (and 1 in 5 adults with high blood pressure) may have chronic kidney disease.

Risk factors for CKD

Ē

• The leading causes of ESRD in our society

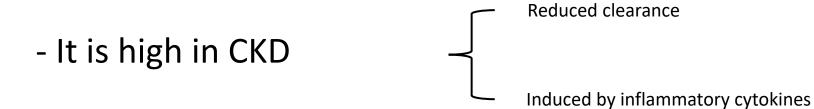
Annual report 2019

Table 3.1.3.1 Causes of Ren among HD patient		
Cause of Renal Failure	N	%
Diabetic Nephropathy	8420	43%
Hypertensive Nephropathy	6679	34%
Unknown Etiology	1715	9 %
Glumerulonephritis	724	4%
Others	502	3%
Obstructive Uropathy	406	2%
Congenital Malformation	380	2%
Heredofamilial Disease	378	2%
Vasculitis	199	1%
Pregnancy Related	119	1%
Total	19522	100%

Uremia:

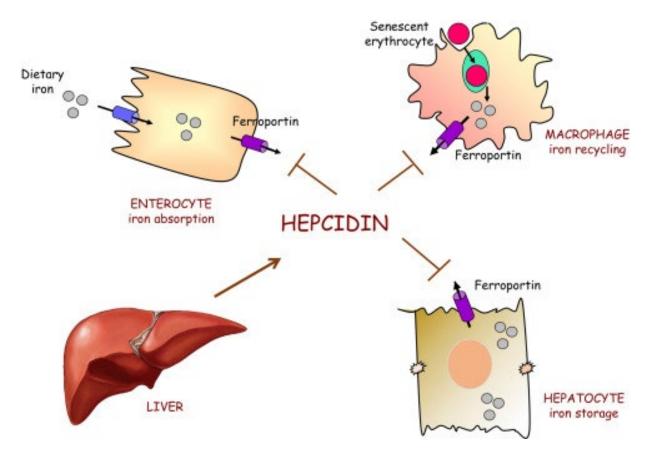
- Pruritis
- Decreased oral intake
- Nausea and vomiting
- Wt loss
- Pericarditis
- Cardiomyopathy
- CNS

- Volume overload
- Electrolytes imbalance (hyperkalemia)
- Metabolic acidosis


Anemia:

- Causes:
 - Deficiency of erythropoietin
 - Uremic-induced inhibitors of erythropoiesis
 - Shortened red blood cell survival
 - High Hepcidin

Anemia


• Hepcidin:

Is the main hormone responsible for maintaining systemic iron homeostasis

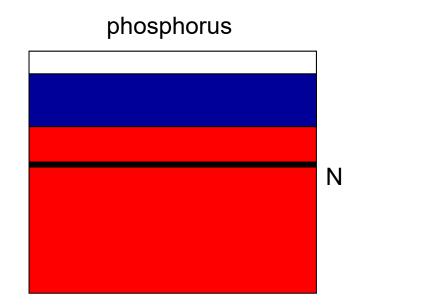
JL. Babitt and HY. Lin, JASN 2012

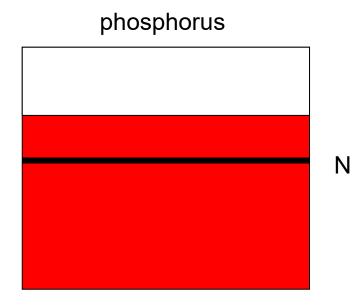
Role of Hepcidin

- Hepcidin result in disordered iron homeostasis
- Anemia of CKD is typically normocytic normochromic

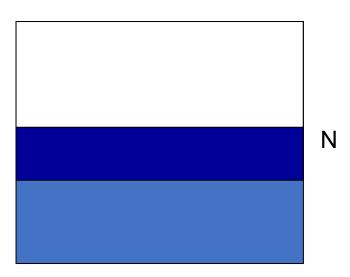
• Bone disease (Mineral Bone disorders)

Why?

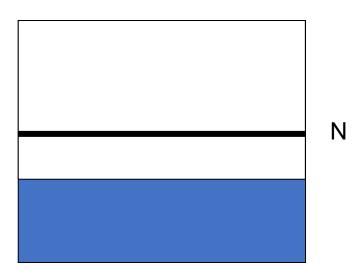

Secondary hyperparathyroidism


Why Secondary hyperparathyroidism?

- Hyperphosphatemia and hypocalcemia
- Reduced production of 1 alpha-hydroxlase enzyme


Why Hyperphosphatemia and hypocalcemia

- 65% of Phosphate is excreted through the kidneys
- 20% of Ca is exerted through the kidneys



1-Bone resorption

2- increase tubular reabsorption of Ca++

3- inhibit tubular reabsorption of phosphorus

4- enhance the formation of calciterol

Renal osteodystrophy

Rugger Jersy spine

- Anemia
- Bone mineral disease
- Coronary Heart Disease
- Other complication when CKD is very advance (GFR<15):
 - Neuropathy
 - Malnutrition
 - Decreased quality of life

Management strategy

- Control the underlying cause:
 - e.g. Work on preventing the stone recurrence
- Halt or slow the progression
- Prepare the patient for renal replacement therapy enough time before uremia symptoms occur

Management of CKD

- Good BP control
 - BP <130/80
- RAAS blockade in proteinuric patients independent of BP
- Lipid lowering agents especially for diabetic and cardiac patients
 LDL-C <2.0 mmol/L
- Diet (protein, sodium)
- Avoid nephrotoxic agents

Management of diabetic kidney disease

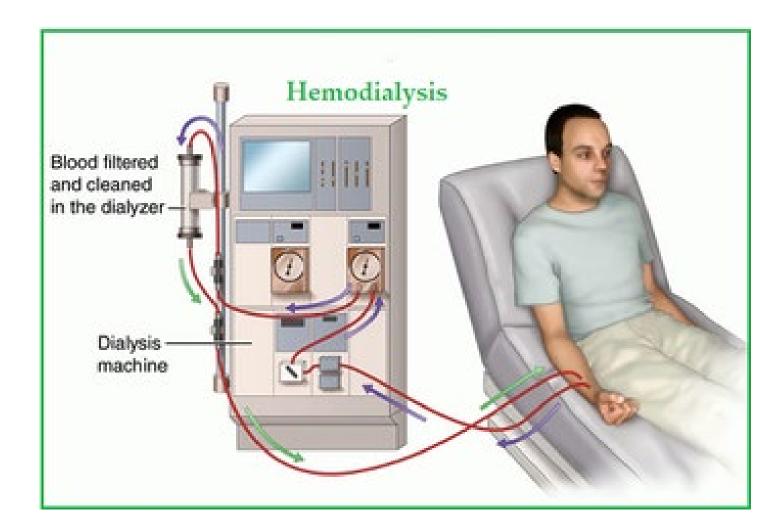
- Good BP control
 - BP <130/80
- RAAS blockade in proteinuric patients independent of BP
- Good glycemic control HgbA₁C <7 %
- Lipid lowering agents including Statins
- - LDL-C <2.0 mmol/L
- Diet (protein, sodium)

Management of diabetic kidney disease

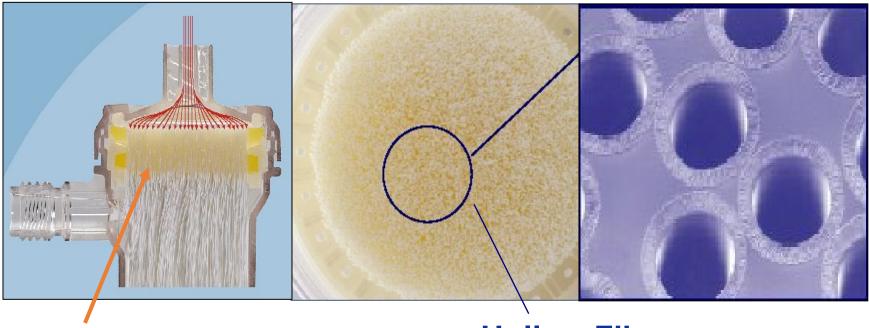
- For diabetic kidney disease in type 2
 - Same as the previous slide plus:
 - SGLT2 inhibitors; such as Dapagliflozin, Empagliflozin

• To consider Finerenone (Non-steroidal mineralocorticoid receptor antagonists) and GLP1 RA e.g Semaglutide (Ozempic)

Management


- Renal Replacement Therapy:
 - Renal transplant
 - Hemodialysis (Fistula creation)
 - Peritoneal dialysis

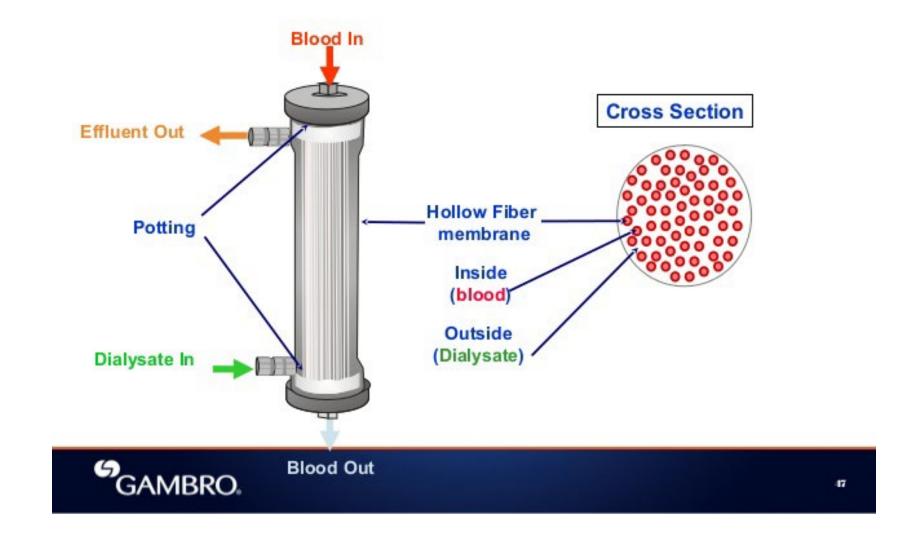
Renal Replacement Therapy


Renal Transplantation

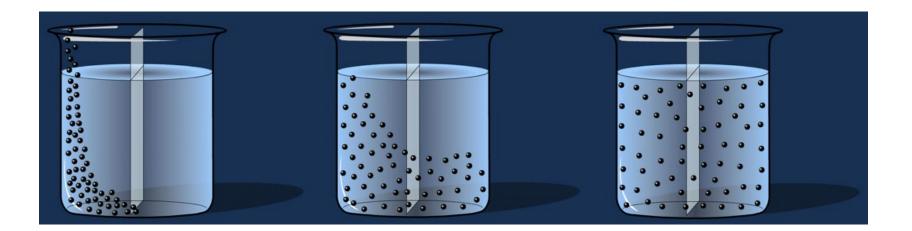
- The modality of choice if no contraidication
- Advantages:
 - Better survival rate
 - Better quality of life
 - Free of dialysis
 - Less medications

Hemodialysis

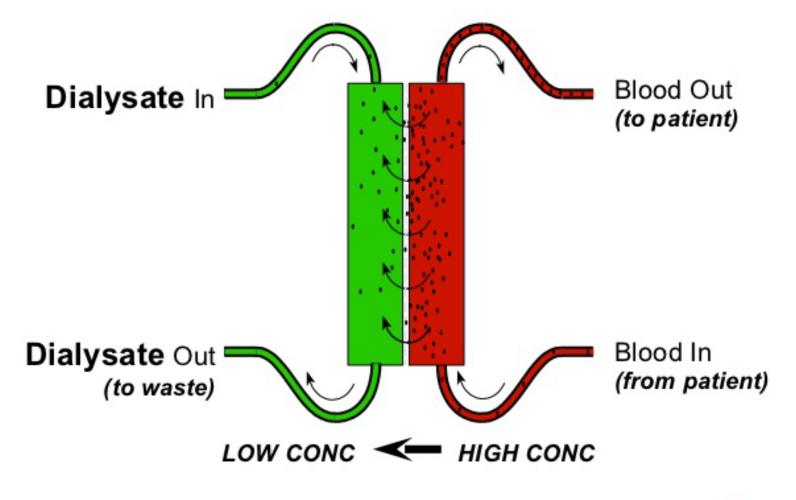
The Basic Filter Membrane



Potting Compound


Hollow Fibers

- 2 compartment unit (blood and fluid) separated by a semi- permeable membrane
- Fiber wall is the semi-permeable membrane


The Basic Hemofilter

Diffusion

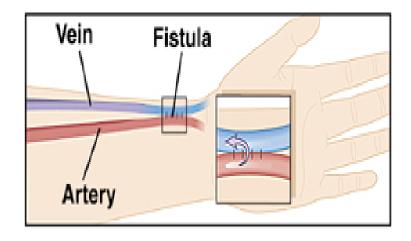
Hemodialysis: Diffusion

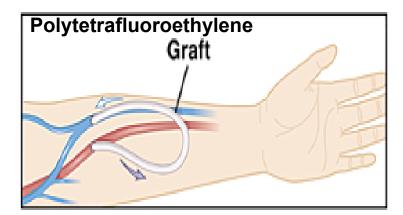
What Hemodialysis CAN Do

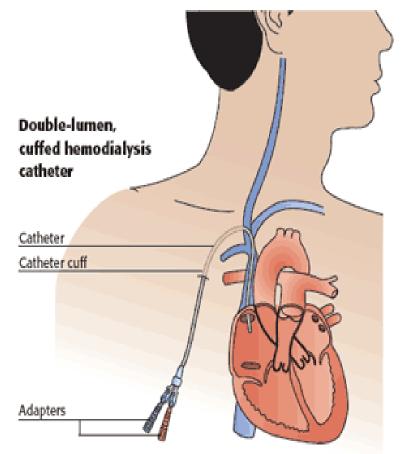
- Fluid removal
- Solute removal, Removal of metabolic end products
- Removal/replacement of electrolytes
- Acid/Base balance

What Hemodialysis CAN'T Do

- Correct endocrine functions of kidney
 - erythropoeitin
 - Renin
 - Vitamin D


- Hemodialysis at best, gives:
 - ~ 15 20% kidney replacement

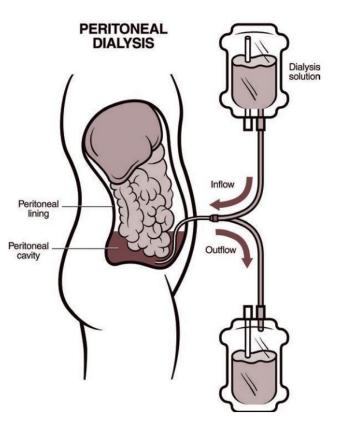

• Conventional Intermittent HD: 4hr-duration, 3 times a week


Hemodialysis Vascular Access

- Arteriovenous Fistula (AVF)
- Arteriovenous Graft (AVG)
- Permanent catheter

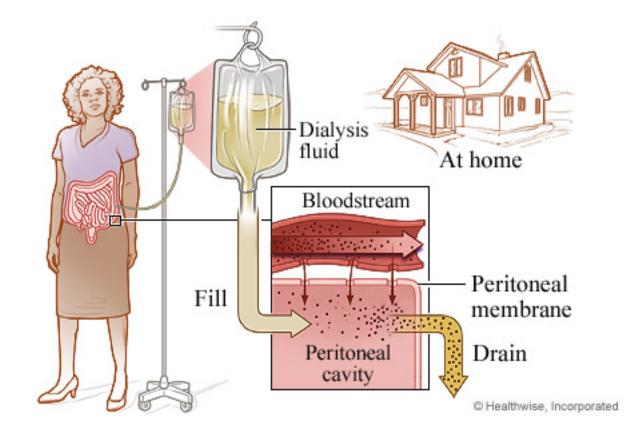
Hemodialysis Vascular Access

Arteriovenous (AV) Fistula



Hemodialysis

- Side Effects
 - dizziness
 - fatigue
 - cramping
 - bleeding from sites
 - unsteadiness


Peritoneal Dialysis

The peritoneal membrane works as a filter here

Peritoneal Dialysis

https://www.cigna.com

What PD can do

- Fluid removal
- Solute removal, Removal of metabolic end products
- Removal/replacement of electrolytes
- Acid/Base balance

What PD can't do?

- Correct endocrine functions of kidney
 - erythropoeitin
 - Renin
 - Vitamin D

Thank you

malkhowaiter@hotmail.com