TABLE OF CONTENTS:

Table of contents:	. 1
Circulation	. 3
Where is blood usually found?	. 3
Capillaries are called exchange vessels:	. 4
 Venules & Veins: Capacitance (سعة) vessels: 	. 4
Vasomotor tone:	. 5
Factors affecting arteriole diameter:	. 5
Vasodilation	. 5
vasoconstriction:	. 6
Flow lows:	. 7
Types of blood flow:	. 7
Laminar Flow:	. 7
Slow flow:	. 7
Fast flow:	. 8
Turbulent Flow:	. 8
What happens during	. 8
Constriction of vessel:	. 8
Relaxation:	. 8
↑in Hematocrit (RBC Count):	. 8
Blood Pressure (B.P.)	. 8
Systolic B.P	. 8
Diastolic B.P.	. 8
Pulse Pressure	. 9
Mean B.P	. 9
Vasomotor Center:	10
Rapid B.P. Control Mechanism	10
1. Baroreceptor (pressure receptor):	10
2. Low Pressure Receptor (stretch receptor)	12
3. CNS effects	12
4. Chemoreceptor:-	12
Long Term Regulation of B.P	12
Sequence of events	12
High B.P. Complications:	13
Microcirculation	13
Main Forces in Blood for Fluid Filtration & Reabsorption:	14
Role of lymphatics	14
Edema	15
Causes of Edema	15
Shock	16
Symptoms & signs;	16
Causes of shock;	16
Stages of shock:	16
Compensatory mechanism in shock:	17
1.Baroreceptor:	17

2.Central N.S.	17
3. Reverse stress relaxation of the circulation system	17
b. Hormonal Mechanism (time of occurrence: 10 min – 1 hour)	17
c. Factors ↑blood volume (time of occurrence: 1hour – 48 hours)	17
Progressive shock	17
Introduction to treatment,	17

THESE NOTES WERE WRITTEN BY:

%7400Mf

looking For More Members !

TYPED, EDITED & MODIFIED BY:

,,,, WITH REGARDS

IMPORTANT NOTICE

THESE NOTES ARE ONLY A **HELP** FOR STUDYING PHYSIOLOGY OF CIRCULATION AND IT **SHOULD BE REFERED TO OTHER RESOURCES FOR THE EXAM PUPROSE.**

CIRCULATION

Blood circulation (Systemic) provides tissues with requirement (nutrient, O_2 , hormones, electrolytes) and removes CO_2 & wastes.

Where is blood usually found?

• We found that the systemic veins contain most the blood

• If there is **constriction** in small arteries & **arterioles** there will be a **\blood** flow. They are called: resistance blood vessels.

• Capillaries are called exchange vessels:

- They are the **most important** part of the circulation **because exchanging of materials** takes place there.
- Thin wall (one layer of endothelial cells & no smooth muscle)
- **Diameter** is very small
- Many **pores** to allow movement of small molecular substances (exchange takes place rapidly).
- \circ Very large surface are (the largest), because every cell needs its own exchange of nutrients. (Total surface area of capillaries: 500,000 700,000m²).
- There are ≈ 10 billion capillaries.

Venules & Veins: Capacitance (سعة) vessels:

- Less thick.
- Greater Diameter.
- Largest amount of blood.
- In case of loss of blood (e.g. hemorrhage) it squeezes to push blood to the right atrium to compensate the loss.
- o Less smooth muscle in thinner walls.
- It is usually under low pressure.

• The pressure is decreasing when the blood flows from the left ventricle to aorta→ arteries → capillaries → venules → veins→ (right atrium having the least pressure)

Vasomotor tone:-

- Only sympathetic innervations play a role in the vasomotor (vaso=vessel) tone:
 - Normal sympathetic supply \rightarrow Normal Diameter.
 - \uparrow sympathetic supply \rightarrow Vasoconstriction (\downarrow diameter)
 - \downarrow sympathetic supply → Vasodilatation (↑ diameter)

Factors affecting arteriole diameter:

Vasodilation

- $\downarrow O_2$, $\uparrow CO_2$, $\uparrow H^+$
- ↑Adenosine,

- *î*heat
- ↑Endothelial Derived Releasing Factor (EDRF) e.g. Nitric Oxide (NO).
- ↓ympathetic stimulation (below normal)
- Myogenic Activity
- Hormonal Factors (not local) e.g. histamine, Bradykinin

vasoconstriction:-

- $\uparrow O_2, \downarrow CO_2, \downarrow H^+$
- ↓Adenosine
- Cold
- \downarrow EDRF e.g \downarrow NO
- *†ympathetic stimulation*
- Hormonal Factors (not local) e.g. Norepinephrine, epinephrine, AntiDieuretic Hormone (ADH) (Vasopressin), Angiotensin II.

Flow lows:

Obm's Laws $Q = \Delta P$	Q: Blood Flow
Omm s Law. $Q = \frac{R}{R}$	ΔP : pressure Difference
	R: Resistance (inversely proportional to
	flow).
$L \times \eta$	R: Resistance
$R = \frac{1}{r^4}$	L; Length
	η: viscosity (depends mainly on plasma
	proteins & blood cells)
	r: radius
(From the 2 above equations we get:)	The physiological importance of the
$\Delta P \times r^4$	equations:
$Q = \frac{1}{L \times \eta}$	$Q \propto r^4$
	$R \propto rac{1}{r^4}$
	(The main determinant (محدد) of blood flow
	is the radius, which is proportional by its
	4 th power).

• Blood flow in capillaries is intermittent (متقطع) flow

Laminar Flow:

- Steady
- No Sound
- Normal Blood flow
- Less energy required
- Normal velocity
- Streamline flow

Slow flow:

- There is **resistance**.
- There is **friction** between RBCs and the wall of the vessel.

Fast flow:

- Less resistance
- **RBCs** are located in the **center** leading to **less friction** between RBCs and the walls.

Turbulent Flow:

- Happens when anything **blocks** the way of the RBCs.
- Blood goes in **different directions** (mixing of blood flow).
- There are sounds heard called **murmers** or **Korotkoff sounds**¹.
- Less velocity.
- More energy loss.
- Slow blood flow.
- Occurs by narrowing of arteries wall e.g. obstruction of blood vessels when we measure B.P.

What happens during...

Constriction of vessel:

• \uparrow B.P., \downarrow velocity, \uparrow resistance

Relaxation:

• \uparrow Blood flow, \uparrow velocity, \downarrow resistance

↑ in Hematocrit (RBC Count):

↑ viscosity → More B.P. required to push blood → ↑ resistance, ↓velocity, ↓O₂
 Delivery

So hematocrit is a determinant of the B.P. & viscosity.

BLOOD PRESSURE (B.P.)

Definition: It is pressure exerted by blood against the vessel wall.

Systolic B.P.

- **Definition:** the **highest** pressure recorded in the arteries during **systole**.
- At rest: 120 mmHg in young age, in old age *†*B.P. (may reach 140)
- \uparrow **Activity:** systolic B.P. \uparrow .
- **Range:** 100-140 mmHg
- Systolic Hypertension: caused by \uparrow H.R. & \uparrow contractility of the heart.

Diastolic B.P.

• **Definition:** The **lowest** pressure recorded in the arteries during **diastole**.

¹Blood flow through partially open blood vessel causing turbulent blood flow and that will produce a sound called **Korotkoff** sound

- At rest: 80 mmHg.
- **Range:** 60-90 mmHg
- \uparrow **Activity:** diastolic B.P. \downarrow .
- **Diastolic Hypertension:** caused by \uparrow T.P.R.¹

Pulse Pressure

- **Definition:** Systolic Pressure (S.P.) Diastolic Pressure (D.P.)
- e.g. 120-80=40mmHg.
- If stroke volume \uparrow , pulse pressure \uparrow .
- If the compliance² \uparrow , pulse pressure \downarrow .
- In some cases the pulse pressure is not felt but the heart is contracting. This indicates bad contractility of the heart.

Mean B.P.

• Definition: It is the average pressure which forces the blood to the tissues. It is the most important B.P..

DiastolicB.P.+ $\frac{\text{SystolicPressure(S.P.)-DiastolicPressure(D.P.)}}{3}$ = DiastolicB.P.+ $\frac{\text{PulsePressure}}{3} \text{E.g.80} + \frac{40}{3} = 93 \text{mmHg}$

(divided by 3 because diastole is 3 times longer than systole, the number should be nearer to the diastole than the systole).

- Mean B.P. is directly proportional to Cardiac Output & Total Peripheral Resistance
- Mean B.P. \downarrow in case of **shock** so it doesn't transport blood to tissues.

¹ To know more about TPR look at Linda Physiology, 3rd Ed, P.151

² Compliance = distensible = قابل للتوسع

Vasomotor Center:

- The center that controls H.R. & circulation.
- It is found in the medulla of the brain.
- It keeps the vasomotor tone (blood vessels are partially contracted) by sending impulses continuously to sympathetic system.
- It does the action of:
 - Excitation of sympathetic \rightarrow Constriction of blood vessels
 - \circ Inhibition of sympathetic \rightarrow Dilatation
- Vasomotor center regulates the B.P. in ms (rapid control)
- Cardioregulatory center:
 - \circ \uparrow heart rate \rightarrow sympathetic
 - \downarrow heart rate → parasympathetic

Rapid B.P. Control Mechanism

1. Baroreceptor (pressure receptor):

- Are sensitive to any change in B.P.
- Are mainly found in:
 - **Carotid sinus** (angle of the jaw) where the carotid artery bifurcates. (sends signals to the vasomotor center via the **Glossopharyngeal nerve**).
 - Aortic arch (sends signals to the vasomotor center by the Vagus nerve).

Figure 21.39

- When there is \uparrow in **B.P**. the barorecptor will send signals to vasomotor center to \downarrow **H.R.** and dilate the blood vessels.
- Increased signals from barorecptor causes:
 - Inhibition of the vasomotor (sympathetic)
 - Stimulation of the Vagus nerve

Page 11 of 17

2. Low Pressure Receptor (stretch receptor)

- Found in atria, large veins, and pulmonary circulation.
- Stimulated by \uparrow **blood volume** causing stretching
- Effects of low pressure receptor stimulation
 - 1. \uparrow afferent blood flow to the kidney $\rightarrow \uparrow$ GFR¹ $\rightarrow \uparrow$ urine output.
 - 2. **↓secretion** of **ADH** hormone.
 - 3. **Jaldosterone** secretion.
 - 4. \uparrow atrial natriuretic peptide hormone (ANP) secreted by the atria
- Effects of low pressure receptor:-
 - 1. \uparrow urine output (\downarrow water in blood).
 - 2. \uparrow Na⁺ excretion by the kidneys (\downarrow Na⁺ in blood).

3. CNS effects

Any stress condition \rightarrow stimulation to sympathetic system $\rightarrow \uparrow$ H.R. $\rightarrow \uparrow$ constriction of blood vessel $\rightarrow \uparrow$ B.P.

4. Chemoreceptor:-

 \downarrow B.P. (<80 mm Hg) $\rightarrow \downarrow$ O₂ \rightarrow chemoreceptor stimulated $\rightarrow \uparrow$ B.P. $\rightarrow \uparrow$ O₂

- It is **not as sensitive** as the barorecptor.
- Found in the same places as the barorecptor.
- They are called **carotid & aortic bodies**.

Long Term Regulation of B.P.

It is used in long term and <u>NOT</u> rapidly, used when the baroreceptors (short term receptors) get used to the high B.P. so it does not affect the B.P.

Sequence of events

- In case of Hypotension:
 - Angiotensiongen changes to Angiotensin I by **renin** from kidney.
 - Angiotensin I is changed to Angiotensin II by **converting enzymes** from lungs, which will cause:
 - Vasoconstriction $\rightarrow \uparrow B.P.$
 - \uparrow Aldosterone (which will \uparrow sodium and water reabsorption) $\rightarrow \uparrow$ B.P.
- In case of hypertension:
 - \downarrow Renin secretion by the kidneys → \downarrow angiotensin II
 - → \downarrow aldosterone, \downarrow ADH secretion, \uparrow ANP hormone secretion
 - → Na⁺ excretion with urine (control of \uparrow B.P. by urine output),

 $[\]downarrow$ Blood volume $\rightarrow \downarrow$ B.P.

¹ GFR stands for Glomerular Filtration Rate. It is the rate of filtration of the kidney.

High B.P. Complications:

- Left heart failure → pulmonary edema
- Renal failure
- Stroke in brain (brain bleeding & clotting) → paralysis.
- **Impairment** of vision.

MICROCIRCULATION

- (micro) because it is not seen by naked eye, it should be seen by the microscope.
- The **most important** part of the circulation.

- Starts when the small arterioles enter the tissues and ends when the small venules leaves the tissue.
- Site of exchange of nutrients, electrolytes, and wastes
- Flow is slow to allow exchanging.
- It involves capillaries, arterioles, and venules.
- Very **large surface area** (the largest) in the capillaries, because every cell needs its own exchange of nutrients. (Total surface area of capillaries: 500,000 700,000 m²).

Main Forces in Blood for Fluid Filtration&Reabsorption:

- 1. **Hydrostatic pressure (filtration pressure):** it makes water leave the capillaries to the interstitial space:
 - When blood enters the arteriole, the B.P. is 37 mmHg (hydrostatic pressure).
 - Filtration will take place in the **arterial** end of the capillaries.
 - Filtration = 37 25 1 = 11 mmHg
- 2. **Plasma Colloid Osmotic Pressure (oncotic pressure):** it causes suction pressure or reabsorption pressure (includes inhibition of filtration).
 - When blood leaves through venules, the B.P. is 17 (oncotic pressure is constant and ≈ 25 mmHg).
 - Reabsorption will take place in the venous end of the capillaries.
 - Interstitial pressure is 1 mmHg & this pressure is hydrostatic pressure **back** to the capillaries.

Role of lymphatics

Lymphatics have an important role in filtration & reabsorption because it takes the extra fluid from the interstitial through lymph vessels to the Right Atrium.

Edema

- Edema is excessive fluid that accumulates in the interstitial space.
- When there is high hydrostatic or low oncotic pressure, edema occurs.

Causes of Edema

- Retention (احتفاظ) of salt & water by the kidneys.
- \uparrow venous pressure \rightarrow \uparrow hydrostatic pressure \rightarrow Heart failure:
 - If in R.V. \rightarrow edema in lower limbs & congestion of the liver.
 - If in L.V. → pulmonary edema.

And the \uparrow in the venous pressure is caused by:

- o Block of veins.
- Standing for a long period because of gravity $\rightarrow \downarrow$ venous return $\rightarrow \uparrow$ pressure in venules $\rightarrow \uparrow$ filtration \rightarrow edema in ankle & feet.
- Paralysis (muscle pump fails → edema).
- Immobilization (not moving \rightarrow edema).
- **Dilatation** of the **arterioles** cause:
 - Failure of the sympathetic nervous system \rightarrow loss of vasomotor tone.
 - Vasodilator drug (e.g. drugs used for \downarrow B.P.)
- \downarrow plasma proteins $\rightarrow \downarrow$ oncotic pressure . It is caused by:
 - Nephrotic Syndrome: Kidney Disease (nephrosis) → protein excreted in urine (normally no protein in urine).
 - Malnutrtion: not taking protein. (may be due to not eating proteins or to bad absorption of amino acids in the intestines).
 - Liver disease: Liver is the main organ that synthesizes protein (albumin). Liver disease $\rightarrow \downarrow$ plasma proteins \rightarrow edema.
- Increase capillaries' permeability → loss of proteins from blood to the interstitial space → ↓oncotic pressure → edema. It is caused by:
 - Burn or Injury.
 - Allergic reaction → ↑ histamine → dilatation of capillaries → loss of protein → ↓oncotic pressure → edema.
- Lymphatic obstruction → fluid accumulates in interstitial space → edema. It may be caused by:
 - Flaviasis due to nematode (a type of worms that blocks lymphatics) \rightarrow elephantiasis.

SHOCK

(This part is NOT included in the 2^{nd} physiology quiz on Sat. 19/12/1428H)

- It is sudden drop in B.P. & C.O. leading to decreased tissue perfusion (tissue blood flow).
- Shocked person may be conscious , unconscious, semiconcious or in coma (غيبوبة).

Symptoms & signs;-

- Very rapid thready (ضعيف وسريع) pulse.
- \uparrow H.R., \downarrow pulse, \downarrow contractility.
- Skin is cold (due to vasoconstriction on the skin), and wet (vasodilatation of blood vessels to sweat gland), and undergoes cyanosis¹.
- ↓**B**.**P**.
- ↓C.O.
- ↑ Respiratory rate,
- Oliguria²
- Thirst.

Causes of shock;

- **Hypovolumic shock** $\rightarrow \downarrow$ C.O., \downarrow B.P. It may be caused by:
 - o Hemorrhage نزيف (loss of whole blood). This is the most common cause.
 - Vomiting, diarrhea, sweat (loss of plasma).
- Cardiogenic shock (e.g. myocardial infaction).
- Vasogenic shock: ↑ widespread (منتشر) vasodilatation of blood vessels because:
 - Septic shock (bacterial infection).
 - Anaphylactic shock: secretion of histamine due to allergic reaction.
- Neurogenic shock:
 - Due to failure of sympathetic nervous system → loss of vasomotor tone
 → vasodilatation → ↓B.P & ↓C.O.

Stages of shock:

- Non-progressive (compensated) stage.
- Progressive shock.
- Irreversible shock.

¹ Blueness of the skin, and its cause is excessive amounts of deoxygenated hemoglobin in the skin blood vessels

² Diminished urine output below the level of intake of water and solutes.

*Compensatory mechanism in shock*¹*:*

a. (The below three mechanisms happen in the first 30 seconds)

1.Baroreceptor:

- barorecptor stimulated $\rightarrow \uparrow$ sympathetic stimulation \rightarrow :
 - \rightarrow ↑ vasoconstriction of the arterioles \rightarrow ↑ TPR \rightarrow B.P.
 - → venoconstriction → \uparrow venous return.

→ ↑ C.O.

2.Central N.S

Ischemic response. If there are $\downarrow O_2 \& \downarrow blood$ flow \rightarrow another sympathetic stimulation. (Last trial depending on sympathetic).

3. Reverse stress relaxation of the circulation system

Blood vessel will contract to contain the small amount of the blood to maintain B.P.

b. Hormonal Mechanism (time of occurrence: 10 min – 1 hour)

- 1. \uparrow **renin** secretion by the kidney (its action is explained above).
- 2. \uparrow **ADH** secretion by posterior pituitary gland. (retention of water &salt $\rightarrow \uparrow$ blood volume $\rightarrow \uparrow$ B.P.

c. Factors ↑ blood volume (time of occurrence: 1hour – 48 hours)

- 1. ↑ **absorption of water** from the G.I.T.
- 2. \uparrow **reabsorption** of fluid from the interstitial space to the capillaries.
- 3. ↑ water intake, ↑ salt desire (شهرة).

If there is \downarrow of mean B.P. to 70 mmHg the circulation of the heart & brain will not be affected because thy have minimum sympathetic effect and also excellent autoregulation.

Progressive shock

The situation gets much worse ندهور, and from its effects:

- 1. Cardiac depression because of $\downarrow O_2$.
- 2. Vasogenic failure (loss of vasomotor tone).
- 3. **†** intravascular coagulation (small blood vessels will be blocked because of clots)
- 4. ↑ **capillary permeability** because of secretion of histamine → vasodilator → ↑interstitial fluid → may cause edema → ↓Blood Volume.
- 5. Organs Failure: Liver, Kidney.

Introduction to treatment,,

- If there is loss of plasma fluid → transfusing plasma expander.
- If there is loss of whole blood → whole blood transfusion.

¹ If there is 10% loss of blood there is no effect on the body because it will compensate. If there is 35-45% loss of blood the C.O. & B.P. are zero (irreversible shock)