Gastrointestinal Physiology

Dr. Mohammed Alzoghaibi

The Role of GIT

- Provides the body with water, electrolytes and nutrients
- Requires:
 - 1. Movement of food
 - 2. Break down the food to absorbable materials
 - 3. Digestion of food by different juices
 - 4. Absorption of digestive materials
 - 5. Transferring the product via circulation
 - Controlled by nervous system

FIGURE 17-1

Anatomy of the gastrointestinal system. The liver overlies the gallbladder and a portion of the stomach, and the stomach overlies part of the pancreas. X

SMOOTH MUSCLE OF G.I.

TWO SMOOTH MUSCLE CLASSIFICATIONS

> Unitary type

- Contract spontaneously in the absence of neural or hormonal influence but in response to stretch (such as in stomach and intestine)

- Cells are electrically coupled via gap junctions

> Multiunit type

- Do not contract in response to stretch or without neural input (such as in esophagus & gall bladder)

The Musculature of the Digestive Tract

Two main muscle layers:
Longitudinal muscle layer
Circular muscle layer
Oblique muscle layer (stomach only)

The Musculature of the Digestive Tract

- Longitudinal Muscle:
- Contraction shortens the segment of the intestine and expands the lumen
- Innervated by ENS, mainly by excitatory motor neuron
- Ca influx from out side is important

The Musculature of the Digestive Tract

Circular muscle:

- Thicker and more powerful than longitudinal
- Contraction reduces the diameter of the lumen and increases its length
- Innervated by ENS, both excitatory and inhibitory motor neurons
- More gap junctions than in longitudinal muscle
 Intracellular release of Ca is more important

(a)

Dr. Alzoghaibi

11

Electromechanical & Pharmacomechanical Coupling Trigger Contractions in GI Muscles

Depolarization opens the voltage-gated
 Ca channels (electromechanical coupling)

 Ligands open the ligand-gated Ca channels (pharmacomechanical coupling)

Gastrointestinal Peptides

Hormones

- endocrine cells
- via portal circulation and liver
- e.g., gastrin, CCK, secretin and GIP

Paracrines

- endocrine cells
- thru diffusion at the same tissue
- e.g., somatostatin (mucosa), to inhibits gastric H secretion

Neurocrines

- neuronal cells in GI tract
- e.g., VIP, GRP and Enkephalins

Slow Waves & Action potentials are Forms of Electrical Activity in GI Muscles

Slow waves

- Unknown cause
- Responsible for triggering AP in G.I.
- Interstitial cells of Cajal, ICCs (pacemaker)

Myenteric border

Submucosa border

- Occur at different frequency

stomach (3/min) small intestine (duodenum, 12-18/min) ileum & colon (6-10/min)

- May or may not accompanied by AP

FIGURE 62-3

Membrane potentials in intestinal smooth muscle. Note the slow waves, the spike potentials, total depolarization, and hyperpolarization, all of which occur under different physiologic conditions of the intestine.

Alzoghaibi

Slow Waves & Action potentials are Forms of Electrical Activity in GI Muscles

- Factors that depolarize the membrane:
 Stretching of the muscle
 Ach
- Parasympathetic stimulation
- Hormonal stimulation
- Factors that hyperpolarize the membrane:
 Norepinephrine
 Sympathetic stimulation

- Autonomic nervous system (ANS) is divided into
 - Parasympathetic
 - Sympathetic
 - ENS

- > Parasympathetic Nerves:
- Located in brain stem & sacral region
- Projection to the G.I. are preganglionic efferents
- Vagus & pelvic nerves
- Vagus nerves synapse with neurons of ENS in esophagus, stomach, small intestine, colon, gall bladder & pancreas
- Pelvic nerves synapse with ENS in large intestine
- Neurotransmitter is Ach 19

Sympathetic nerves:
Located in thoracic & lumbar regions
Neurotransmitter is NE
NE increases sphincter tension
Inactivate the motility

EXTRINSIC NERVOUS SYSTEM

22

- Enteric Nervous System (minibrain)
- Has as many neurons as spinal cord
- Located close to the effector systems such as:
 - Musculature
 - Glands
 - Blood vessels (from esophagus to the anus)
- Consists of ganglia & fibers projecting to the effector systems

- Enteric Nervous System (minibrain)
 Composes of two plexuses:
 - 1- myenteric plexus: excitatory or inhibitory (outer plexus)
 - increases intensity of rhythm of contraction
 - increases tone
 - increases rhythm rate
 - increases velocity of conduction of excitatory waves
 - 2- Submucous plexus (inner plexus)

25

28

Excitatory Motor Neurons Evoke Muscle Contraction & Intestinal Secretion

Neurotransmitters of motor neurons:

- 1. Substance P
- 2. Ach
- Neurotransmitters of secretomotor neurons (releasing of water, electrolytes and mucus from crypts of Lieberkuhn):
- 1. Ach
- 2. VIP
- 3. Histamine (neurogenic secretory diarrhea)

Inhibitory Motor Neurons Suppress Muscle Contraction

- Neurotransmitters:
- 1. ATP
- 2. NO
- 3. VIP

N.B. Longitudinal muscles do not have inhibitory motor innervation

SMOOTH MUSCLE OF G.I.

Phasic contractions

- periodic contractions followed by relaxation; such as in gastric antrum, small intestine and esophagus

Tonic contractions

- maintained contraction without relaxation; such as in orad region of the stomach, lower esoghageal, ileocecal and internal anal sphincter

- not associated with slow waves

SMOOTH MUSCLE OF G.I.

- Tonic contractions (continued):
 - Caused by:
- Continuous repetitive spike potential
- Hormonal effects
- Continuous entery of Ca

Hormone	Hormone Family	Site of Secretion	Stimuli for Secretion	Actions
Gastrin	Gastrin-CCK	G cells of the stomach	Small peptides and amino acids Distention of the stomach Vagal stimulation (GRP)	↑ Gastric H ⁺ secretion Stimulates growth of gastric mucosa
Cholecystokinin (CCK)	Gastrin-CCK	I cells of the duodenum and jejunum	Small peptides and amino acids Fatty acids	 ↑ Pancreatic enzyme secretion ↑ Pancreatic HCO₃ secretion Stimulates contraction of the gallbladder and relaxation of the sphincter of Oddi Stimulates growth of the exocrine pancreas and gallbladder Inhibits gastric emptying
Secretin	Secretin-glucagon	S cells of the duodenum	H ⁺ in the duodenum Fatty acids in the duodenum	 ↑ Pancreatic HCO₃ secretion ↑ Biliary HCO₃ secretion ↓ Gastric H⁺ secretion Inhibits trophic effect of gastrin on gastric mucosa
Gastric inhibitory peptide (GIP)	Secretin-glucagon	Duodenum and jejunum	Fatty acids Amino acids Oral glucose	 ↑ Insulin secretion from pancreatic β cells ↓ Gastric H⁺ secretion

TABLE 8-2. Summary of Gastrointestinal Hormones

33

Substance	Source	Actions
Acetylcholine (ACh)	Cholinergic neurons	Contraction of smooth muscle in wall Relaxation of sphincters ↑ Salivary secretion ↑ Gastric secretion ↑ Pancreatic secretion
Norepinephrine (NE)	Adrenergic neurons	Relaxation of smooth muscle in wall Contraction of sphincters ↑ Salivary secretion
Vasoactive intestinal peptide (VIP)	Neurons of mucosa and smooth muscle	Relaxation of smooth muscle ↑ Intestinal secretion ↑ Pancreatic secretion
Gastrin-releasing peptide (GRP) or bombesin	Neurons of gastric mucosa	↑ Gastrin secretion
Enkephalins (opiates)	Neurons of mucosa and smooth muscle	Contraction of smooth muscle ↓ Intestinal secretion
Neuropeptide Y	Neurons of mucosa and smooth muscle	Relaxation of smooth muscle ↓ Intestinal secretion
Substance P	Cosecreted with ACh	Contraction of smooth muscle ↑ Salivary secretion

TABLE 8-1. Neurotransmitters and Neuromodulators in the Enteric Nervous System