27 Urine Formation by the Kidneys: II. Tubular Processing of the Glomerular Filtrate

pages 327 - 347

OBJECTIVES

At the end of this lecture you should be able to describe:

Absortive Characteristics of different parts of nephrons

- Transport Mechanisms operating in nephrons
- Tubular Reabsoprtion and Secretion

CLASSIFICATION OF TRANSPORT MECHANISMS

- SIMPE DIFFUSION
- FACILITATED DIFFUSION
- BULK TRANSPORT
- PRIMARY ACTIVE TRANSPORT
- SECONDARY ACTIVE TRANSPORT
- ENDOCYTOSIS
- PINOCYTOSIS

TRANPORT PATHWAYS

PARACELLULARTRANSCELLULAR

REABSORTION PATHWAYS

REABSORPTION PATHWAYS

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

REABSORPTION OF WATER IN DIFFERENT SEGMENTS OF TUBULES

PART OF NEPHRON	PERCENTAGE	
	REABSORBED	
Proximal tubules	65	
Loop of Henle	15	
Distal tubules	10	
Collecting ducts	9.3	
Passing into urine	0.7	

REABSORPTION OF WATER IN DIFFERENT SEGMENTS OF TUBULES

PART OF NEPHRON	AMOUNT REABSORBED
Glomerular Filtrate	125
Flowing into the loops of Henle	45
Flowing into the distal tubules	25
Flowing into the collecting tubules	12
Flowing into the urine	1

TUBULAR TRANSPORT MAXIMUM

 The Maximum limit/rate at which a solute can be transported across the tubular cells of kidneys is called TUBULAR TRANSPORT MAXIMUM

Tm for Glucose is 375 mg/min

TUBULAR TRANSPORT MAXIMUM FOR DIFFERENT SUBSTANCES

SUBSTANCE	Tm
Glucose	375 mg/min
Phosphate	0.1 mM/min
Sulfate	0.06 mM/min
Amino Acids	1.5 mM/min
Urate	15 mg/min
Plasma Protein	30 mg/min
Hemoglobin	1 mg/min
Lactate	75 mg/min
Acetoacetate	variable

Transport Maximums for Substances That Are Actively Secreted

Substance	Transport Maximum
Creatinine	16 mg/min
Para-aminohippuric acid	80 mg/min

	Amount Filtered	Amount Reabsorbe d	Amount Excreted	% of Filtered Load Reabsorbed
Glucose (g/day)	180	180	0	100
Bicarbonate (mEq/day)	4,320	4,318	2	>99.9
Sodium (mEq/day)	25,560	25,410	150	99.4
Chloride (mEq/day)	19,440	19,260	180	99.1
Potassium (mEq/day)	756	664	92	87.8
Urea (g/day)	46.8	23.4	23.4	50
Creatinine (g/day)	1.8	0	1.8	0

Changes in Average Concentration of Different Substances at Different Points in Tubular System Relative to Glomerular Filtrate

Sodium Reabsorption from tubular lumen into blood involves 3 steps:

- 1. Sodium diffuses across the luminal membrane into the cell down an electrochemical gradient established by the sodium-potassium ATPase pump on the basolateral side of the membrane.
- 2. Sodium is transported across the basolateral membrane against an electrochemical gradient by the sodium-potassium ATPase pump.
- 3. Sodium, water, and other substances are reabsorbed from the interstitial fluid into the peritubular capillaries by ultrafiltration, a passive process driven by the hydrostatic and colloid osmotic pressure gradients.

SODIUM HANDLING

SITE	APICAL TRANSPORTER	FUNCTION
Proximal Tubule	•Na/Gluc CT	Na & Gluc Uptake
	•Na/Pi CT	 Na & Pi Uptake
	•Na/Amino Acid	•Na & AA Uptake
	•Na/Lactate	 Na & Lactate Uptake
	•Na/H Exchanger	 Na Uptake and H Extrusion
	•Cl/Base Exchanger	•CI Uptake
Thick Ascending Limb	• Na, 2 Cl,, K CT	•Na, 2 CI,, K Uptake
	•Na/H Exchanger	 Na Uptake and H Extrusion
	•K Channels	•K Extrusion
DCT	NaCI CT	Na & Cl Uptake
Collecting Duct	Na Channel (ENaC)	Na Uptake

GLUCOSE REABSORPTION

GLUCOSE REABSORPTION

GLUCOSE REABSORPTION

Albumin Excretion in health and disease

	Normal	Nephrotic syndrome
Albumin in plasma to be filtered (g)	8000	8000
Albumin actually filtered (g)	36	65
Albumin reabsorbed (g)	36	45
Albumin lost in urine (g)	0	20

HYDROGEN

 Secreted in Proximal Tubule by Counter Transport with Na and also by H ATP ase

Na-H COUNTER TRANSPORT

PCT LUMINAL MEMBRANE ACTIVITY

Secretion of a hydrogen ion by countertransport molecule depends on the simultaneous reabsorption of a sodium ion.

Countertransport molecules can only function from the concentration gradient created by primary active transport pumps of basolateral membrane.

CALCIUM

- Ionized Calcium is freely filtered and reabsorbed in PCT
- It moves into tubular cells passively (downhill)
- It moves out of the cell by Ca/Na Counter Transport or Actively by Ca ATP ase Mechanism
- Its reabsorption is Hormonally controlled

PHOSPHATE

- It is reabsorbed by cotransport with Na in PCT in luminal border
- Its reabsorption is Hormonally controlled
- It is increased by Vit D and decreased by Parathyroid Hormone

UREA

- Plasma concentration is 2.5 7.5 mmol/L
- 50 % is reabsorbed in PCT passively with water
- It is the only waste to be reabsorbed
- Creatinine and Phenol are not reabsorbed at all.

POTASSIUM

- It is both reabasorbed and secreted
- 67% of filtered load is reabsorbed by PCT

 solvent drag
- secreted by distal tubule / collecting duct
 - correlated with dietary intake
 - 80% of filtered load appears in urine if dietary content high
 - 1% if dietary content low

Peritubular Capillary and Renal Interstitial Fluid Physical Forces

DESCENDING LIMB OF LOOP OF HENLE

REABSORPTION IN THIN DESCENDING LOOP OF HENLE

Epithelium transitions from cuboidal epithelial cells to simple squamous epithelial cells.

Membranes are permeable to water but not to NaCI.

Few membrane proteins serving as channels or transporter molecules.

Net result is increased osmolarity of filtrate.

REABSORPTION IN ASCENDING LOOP OF HENLE AND EARLY DCT: LUMINAL MEMBRANE

Carrier molecule cotransports a potassium ion, two chloride ions, and a sodium ion.

Intracellular potassium concentration changes little because potassium returns to the filtrate and interstitium through its channels.

Imported chloride ions follow sodium ions to the basolateral membrane and diffuse into interstitium.

