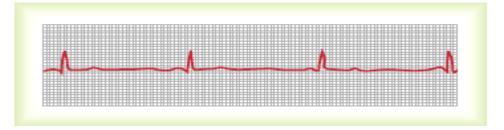

CARDIOVASCULAR PHYSIOLOGY-OUTLINES The Cardiac Cycle – Abnormal ECG (Arrhythmias):

I: Abnormal Sinus Rhythm

1. Respiratory Sinus Arrhythmia:


- HR varies 5% during respiratory cycle & up to 30% during deep respiration.
- HR normally \uparrow in during inspiration & \downarrow during expiration.
- ECG: Q-T & P-R intervals are shortened during inspiration & prolonged during expiration.

Note: One P wave per QRS complex Constant PR interval Progressive beat-to-beat change in R–R interval.

2. Sinus Bradycardia (Decreased Automaticity):

- Slow sinus rhythm (\downarrow HR) < 60 bpm.
- Physiologically associated with trained athletes & vagal stimulation (fainting attacks).
- Pathological causes: e.g. hypothermia, hypothyroidism (myxoedema), drugs (β-blockers), & is often seen immediately after a heart attack.

3. Sinus Tachycardia (Increased Automaticity):

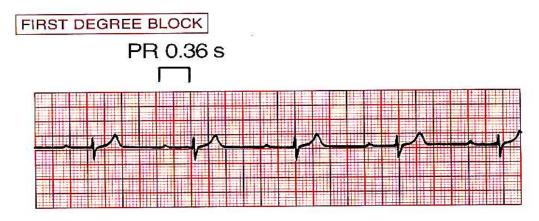
- Fast sinus rhythm (\uparrow HR) > 100 bpm.
- Physiologically associated with exercise, fear, pain, & anxiety.
- Pathological causes: e.g. hypovolaemia (haemorrhage), anaemia, hypoxia, thyrotoxicosis, fever, drugs (salbutamol), & caffeine.
- ECG: Q-T & P-R intervals are shorter than N.

II: Conduction block

- Block of heart signals within the intra-cardiac conduction pathways.
- Commonly caused by ischemia.
- Types of conduction block:
 - Sinoatrial Block
 - Atrioventricular Block
 - Incomplete Atrioventricular Heart Block
 - Complete Atrioventricular Heart Block
 - Bundle Branch Block & Fascicular Block

Atrioventricular Block:

- Conditions that either ↓ rate of impulse conduction in AV- node or AVbundle, or block it entirely:
 - 1) Ischemia of A-V node or A-V bundle fibers.
 - 2) Compression of A-V bundle by scar tissue or by calcified portions of the heart.
 - 3) Inflammation of A-V node or A-V bundle.
 - 4) Extreme stimulation of heart by vagus n.


Incomplete Atrioventricular Heart Block:

- Relatively common.
- Two types:

- First Degree Heart Block
- Second Degree Heart Block
 - Wenckebach type 1
 - Mobitz type 2
 - 2:1 type

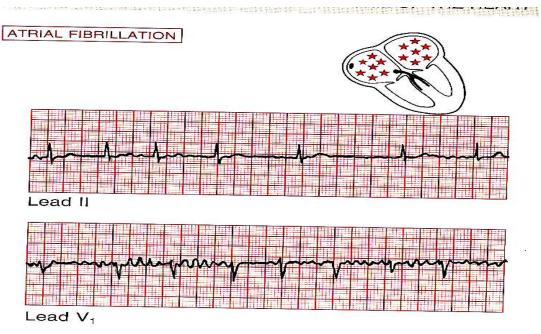
a. First Degree Block:

- Normal waves & no of cycles per min.
- All atrial impulses pass through AV node, but takes longer time.
- Prolonged PR- interval in all cycles > 0.2 sec (N = 0.12-0.2 sec).

Note: One P wave per QRS complex PR interval 0.36 s.

<u>Note</u>: - 1st degree heart block may be seen in normal people.

- It is may be a sign of coronary artery disease, acute myocardial infarction, acute rheumatic carditis, digitalis toxicity or electrolyte disturbances.


- No specific action needed.

III: Re-entry Rhythm

🔸 Atrial fibrillation:

- Caused by numerous wavelets of depolarization (> one ectopic focus) spreading throughout the atria simultaneously.
- Generate absence of coordinated atrial contraction (IRREGULAR atrial impulses from 400-600 bpm).
- ECG:

- P waves absent & replaced by fine oscillating baseline f (fibrillation) waves.
- Irregular ventricular rhythm (100-180 bpm)
- QRS complexes normal shape but irregular in rhythm, due to irregular passage of impulses through AV node.

- Note: No P waves irregular baseline Irregular QRS complexes Normally-shaped QRS complexes In lead V₁ waves can be seen with some resemblance to those seen in atrial flutter — this is common in atrial fibrillation.
 - Causes:
 - Ischaemic heart disease.
 - Hypertensive heart disease.
 - Rheumatic heart disease.
 - Thyotoxicosis.
 - Cardiomyopathy.
 - Post-cardiac surgery.
 - Chronic pulmonary disease.
 - Alcohol misuse.
 - Idiopathic (ione)

IV: Effect of Electrolyte Abnormalities

Potassium level changes:

□ <u>Hyperkalemia (↑ K level)</u>:

- ECG: tall, wide, peaked T waves with the disappearance of the ST segment.
 - QRS complex may be widened.
 - o Tall T- wave.
- **N.B.** Abnormal magnesium levels causes similar effects.

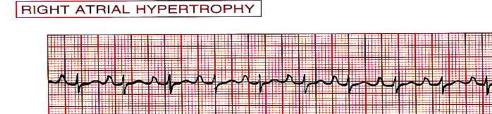
$\Box \quad Hypokalemia (\downarrow K level):$

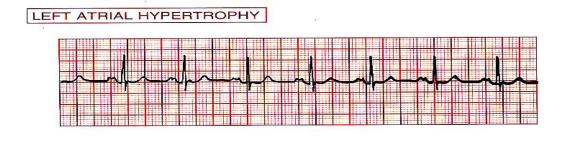
- ECG: T wave flattening, & appearance of a hump on the end of the T wave called a 'U' wave.
 - o Small T- wave.
 - o U- wave.

4 Calcium level changes:

□ <u>Hypercalcemia (↑ Ca level)</u>:

• ECG:


o Short QT- interval.


$\Box \quad \underline{\text{Hypocalcemia}} (\downarrow \underline{\text{Ca level}}):$

- ECG:
 - Prolonged QT- interval.

Abnormalities of P-Wave

	Too Tall > 2.5mm Peaked (tented)	Too Wide > 0.08 sec & notched (bifid; double summit)	Inverted, pointed & usually <0.1 sec wide	Absent
Cause	RA hypertrophy	LA hypertrophy or dilatation	 Retrograde spread from AV-node to A AV Junction rhythm normal in aVR. Coronary sinus rhythm lead II,III, and aVF LA rhythm leads II,III, aVF arm lead reversal 	 Atrial fibrillation. Atrial flutter. Hyperkalaemia. Sinus arrest & sinoatrial block.
Called	P-Pulmonale	P-Mitrate	P-Nodale	Absent

QRS- COMPLEX INTERVAL

<u>≤ 0.10 s</u>	0.10-0.12 s	> 0.12 s
Normal	Incomplete bundle branch block	Bundle branch block PVC Ventricular rhythm
Incomplete bundle branch block 3rd degree AV block with ventricular escape rhythm		

PR-INTERVAL

< 0.12 s	0.12-0.20 s	> 0.20 s
High catecholamine states Wolff-Parkinson-White	Normal	AV nodal blocks
Wolff-Parkinson-White		

QT-INTERVALS

< 0.44 s	> 0.44 s	Long QT
Normal	Long QT	
		Torsades de Pointes

- Prolonged QT can be very dangerous
- It may predispose an individual to a type of ventricular tachycardia called Torsades de Pointes
- Causes include drugs, electrolyte abnormalities, CNS disease, post-MI, & congenital heart disease.

Questions to answer in order to identify an unknown arrhythmia:

Q1. The rate? Is it slow (<60 bpm) or fast (>100 bpm)?

Slow \rightarrow ? sinus bradycardia, sinus arrest, or conduction block

Fast \rightarrow ? increased/abnormal automaticity or reentry

Q2. The rhythm? Is it irregular?

Irregular \rightarrow ? atrial fibrillation, 2nd degree AV block, multifocal atrial tachycardia, or atrial flutter with variable AV block

Q3. The QRS complex? Is it narrow or wide?

Narrow \rightarrow Rhythm must originate from the AV node or above

Wide \rightarrow Rhythm may originate from anywhere

Q4. Are there P waves?

Absent P waves \rightarrow ? atrial fibrillation, ventricular tachycardia, or rhythms originating from the AV node

Q5. What is the relationship between the P waves and QRS complexes?

More P waves than QRS complexes \rightarrow ? 2nd or 3rd degree AV block

More QRS complexes than P waves \rightarrow ? an accelerated junctional or ventricular rhythm

Q6. Is the onset/termination of the rhythm abrupt or gradual?

Abrupt \rightarrow ? reentrant rhythm

Gradual \rightarrow ? altered automaticity