CARDIOVASCULAR PHÝSIOLOGÝ-OUTLINES The Cardiac Cycle - Electrical Events of the Heart:

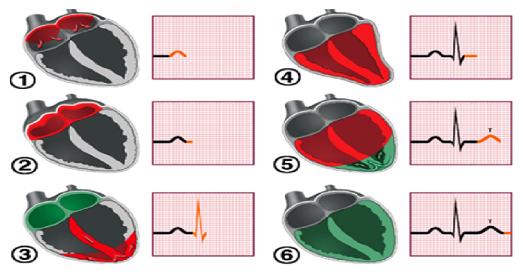
Electrocardiogram is a diagnostic tool that record electrical activity (action potential) generated by the heart & conducted from the body surface by electrodes, per unit time.

4 By the end of this lecture, you will be able to:

- 1. Understand the 12 lead ECG.
- 2. Perform an ECG recording.
- 3. Identify & lable the ECG waves.
- 4. Measure the durations & intervals.
- 5. Calculate the heart rate.
- 6. Determine the normal sinus rhythm.
- 7. Calculate the cardiac axis.
- 8. Report normal ECG.
- ECG is recorded as waves or deflections onto a graph paper.

4 One heartbeat is normally recorded as:

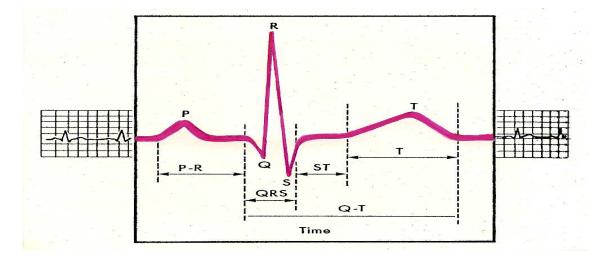
- ♥ a group of 3 waves called: P wave, QRS complex, & T wave
 - 3 positive waves (P, R, & T) ... (away from electrode)
 - 2 negative waves (Q, & S) ... (towards electrode)
- ♥ 2 intervals between waves: PR & QT wave
- ♥ 1 segment: ST segment


Gauses of ECG waves:

	P-wave	QRS-complex	T-wave
Cause	Atrial depolarization	Ventricular depolarization	Ventricular repolarization
Represent	 Time of electrical impulse from SA node to spread through atrial ms Precedes atrial contraction ≈ 0.02 sec. 	 Measured from beginning of Q wave till end of S wave. Consists of 3 waves: <u>Q-wave</u>: 1st –ve deflection, produced by depolarization of interventricular septum. <u>R-wave</u>: 1ST +ve deflection, produced by depolarization of ventricular wall. <u>S-wave</u>: -ve deflection after R, produced by depolarization of the base of the heart. Precedes ventricular contraction ≈ 0.02 sec. Occurs ≈ 0.12-0.2 sec after P-wave; i.e. PR interval, which represents conduction from SA-node to AV-node 	- Occurs during latter part of systole, before the onset of diastole
Character	+ve wave - <u>Height</u> : not > 2- 2.5mm - <u>Duration</u> : not > 0.06-0.11sec - <u>Shape</u> : curved because conduction through atrial ms is slow	 Height: not > 25mm Duration: 0.08-0.1sec (If prolonged, ∴ block in conductive system) 	+ve wave - <u>Height</u> : ≤ 5mm in lead I,II, & III; ≤ 10 mm in leads V1-V6 - <u>Shape</u> : curved because repolarization through ventricular ms is slow

* **N.B.** Atrial repolarization occurs at the same time with ventricular depolarization. But, since ventricular depolarization wave is giant, it masks the atrial repolarization wave.

* **U** - wave is caused by repolarization of Purkinje system.


Electrical Activity of Myocardium:

- 1) atria begin to depolarize
- 2) atria depolarize
- 3) ventricles begin to depolarize at apex; atria repolarize
- 4) ventricles depolarize
- 5) ventricles begin to repolarize at apex
- 6) ventricles repolarize

Normal duration of ECG Waves and Intervals:

- 1. P-R (P-Q) interval.
- 2. QRS duration.
- 3. Q-T interval.
- 4. S-T segment.

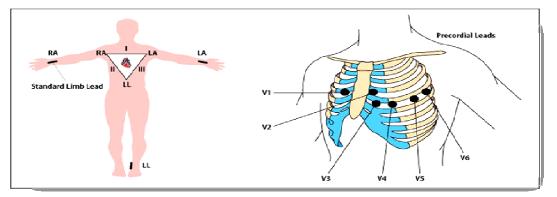
□ <u>PR - Interval</u>: (0.12 - 0.2 sec):

- Extend from <u>beginning</u> of P wave & <u>beginning</u> of QRS complex.
- Represents conduction (spread of excitation) from SA node to AV node.
- Shortens as HR ↑.
- If prolonged, ∴ defect in conductive system.

□ <u>QRS duration</u>: (0.08 - 0.1 sec):

- Measured from <u>beginning</u> of Q wave to <u>end</u> S wave.
- Represents ventricular depolarization.
- If prolonged, ... block in conductive system.

□ <u>QT - Interval</u>: (to 0.4 sec):


- Extend from <u>beginning</u> of Q wave & <u>end</u> of T wave.
- Represents the duration of ventricular depolarization & repolarization.
- Varies with heart rate.
- To estimate QT-interval: a QT > half of RR interval, is probably prolonged.

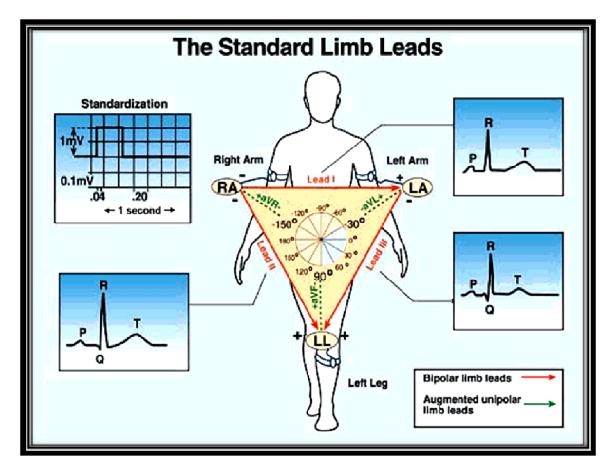
□ <u>ST- segment</u>: (0.3 - 0.32 sec):

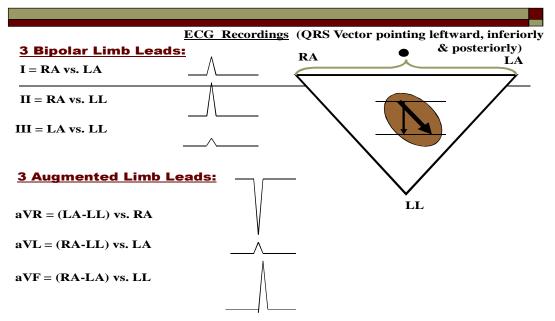
- Should be iso-electric.
- Extend from <u>end</u> of S wave to <u>beg</u>inning of T wave.
- Represents period between ventricular depolarization & repolarization (early phase of ventricular repolarization).

Recording of ECG:

- ECG is recorded indirectly by applying electrodes on the surface of the body (skin).
- ECG is composed of 12 standard leads, which views ventricular surfaces from 12 different angles:
 - Bipolar & Unipolar limb leads look at vertical views.
 - Unipolar Chest leads look at horizontal views.

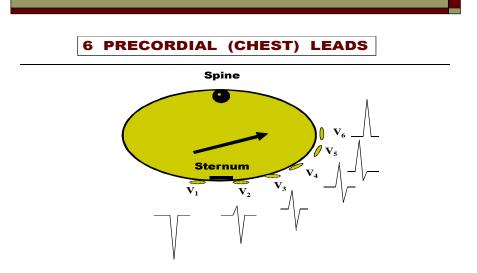
- Bipolar Leads (standard limb leads):
 - Record voltage b/w electrodes placed on wrists & legs.
 - Rt leg is ground.


- Record voltage between 2 limbs at a time.
- Called Bipolar leads, because one limb carries +ve electrode & other limb carries -ve electrode
- 3 standard limb leads.
 - 1. Lead I ... [LA +ve, RA –ve]
 - 2. Lead II ... [LL +ve, RA -ve]
 - 3. Lead III ... [LL +ve, LA –ve]
- Unipolar Leads:
 - Voltage is recorded b/w a single "exploratory electrode" placed on body & an electrode built into the electrocardiograph.
 - Placed on Rt arm, Lt arm, Lt leg, & chest.
 - Allow to view changing pattern of electrical activity from different perspectives.
 - of (2 types):


a. Unipolar limb leads: (Augmented Leads)

- 1. aVR ... (RA)
- 2. aVL ... (LA)
- 3. aVF ... (LL)

b. Unipolar chest leads (Precordial leads):


V1, V2, V3, V4, V5, V6.

The +ve deflection of the leads represents the position of the lead in relation to the direction of the cardiac axis.

- Normal cardiac axis is downward & to the left, i.e. the wave of depolarisation travels from RA towards LV.
- When an electrical impulse travels towards a positive electrode, there will be a positive deflection on the ECG.
- □ if the impulse travels away from the positive electrode, a negative deflection will be seen.
- □ Lead II record shows the tallest R-wave.
- □ AVR lead shows upside down wave pattern.

Calculating the Heart Rate:

> Measured in beats per minute (bpm).

Heart Rate = 1500/no. mm b/w R-R interval

■ 1500 = length in mm/minute,

when the ECG paper speed of is 25mm/sec. (60 X 25)

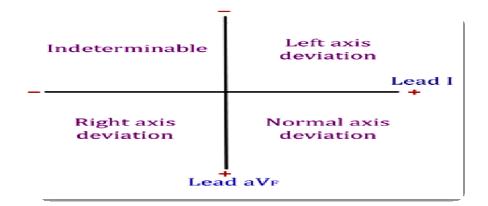
R-R interval = distance b/w 2 R waves in mm.

Determining the Rhythm:

- ➢ Sinus.
- Regular / Irregular.
- > Any change during inspiration / expiration?(sinus arrhythmia)

Normal Sinus Rhythm:

Implies normal sequence of conduction, originating in the sinus node & proceeding to the ventricles via the AV node & His-Purkinje system.



ECG Characteristics: Regular rhythm Rate 60-100 bpm Each QRS complex is proceeded by a P wave P wave is upright in lead II & down going in lead aVR

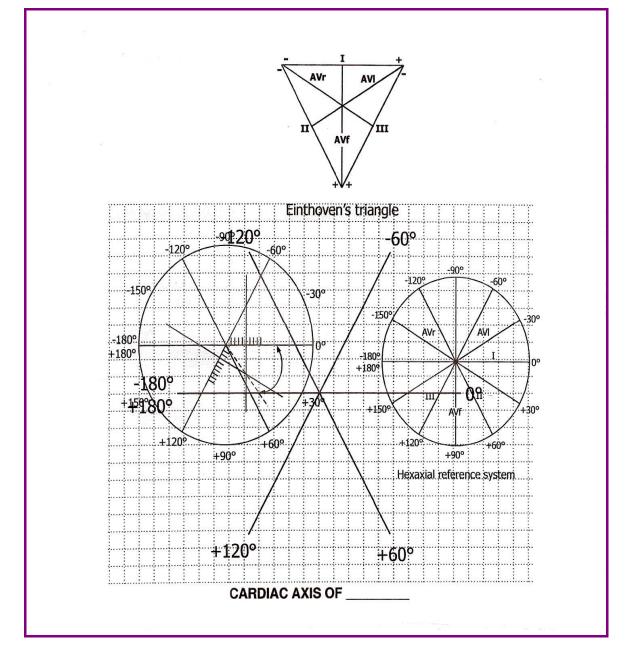
The Cardiac Axis:

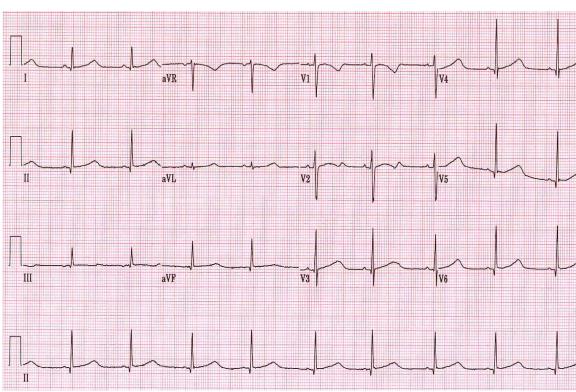
> Normally, anatomical axis nearly coincides w electric axis.

Cardiac Axis Values: Normal axis = 0° to 90° Right axis deviation = 90° to 180° Left axis deviation = 0° to - 90°

Calculating the Cardiac Axis:

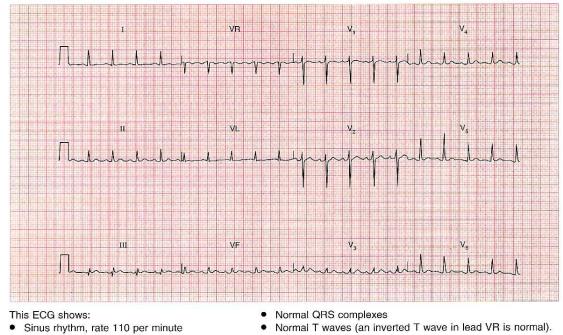
- > Many ways, but 2 methods will be considered to determined the axis.
 - □ Method # 1: Quick method


Look at direction of major deflection in lead I & III

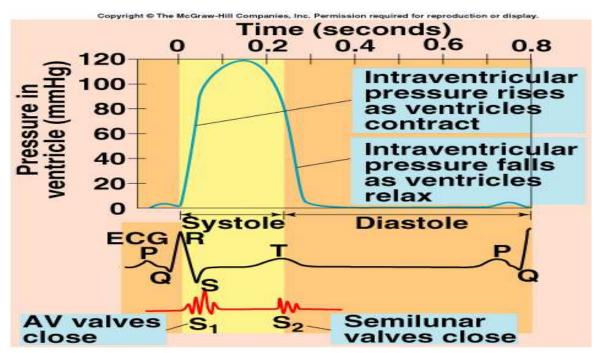

Same direction (upwards)	Normal Axis		
Opposite direction (away)	Lt. Axis deviation		
Towards one another (meeting)	Rt. Axis deviation		

	Normal Axis 0 to 90	Left Axis Physiological O to -30	Left Axis Pathological -30 to -90	Right Axis 90 to 180	Extreme Axis -90 to 180	Indeterminate Axis ?
Lead I	\bigwedge	\bigwedge	\bigwedge	\bigvee	\bigvee	\mathcal{N}
Lead II	\bigwedge	\mathcal{N}	\bigvee	\bigwedge	\bigvee	\mathcal{N}
Lead III	\bigwedge	\bigvee	\bigvee	\bigwedge	\bigvee	\mathcal{N}

Method # 2: Einthoven's triangle; Hexaxial reference system


- 1. Use leads I, II, & III (triaxial reference system).
- **2.** Draw the axis of 60° b/w each.
- **3.** In lead I, measure height of R-wave & depth of S-wave in mm. Calculate R-S.
- **4.** In lead III, measure height of R-wave & depth of S-wave in mm. Calculate R-S.
- 5. Plot on the triaxial reference & determine the cardiac axis.

The Standard 12 – Lead ECG:


Sinus Rhythm

- This ECG shows: Sinus rhythm, rate 110 per minute
- PR interval normal, at 140 ms
- QRS duration normal, at 120 ms .
- Normal cardiac axis

Normal T waves (an inverted T wave in lead VR is normal). Interpretation: Normal ECG.

Correlation of ECG with Heart Sounds:

Clinical Significant of ECG:

- Diagnosis of:
 - chamber enlargement.
 - conduction abnormalities (heart block).
 - dysrhythmias.
 - myocardial infarction.
 - drug effects.
 - electrolyte alterations.
 - coronary artery disease by exercise stress testing.
 - many other abnormalities.