Physiology of the Autonomic Nervous system (ANS)

Dr. Taha Sadig Ahmed

Physiology Department, College of Medicine, King Saud University

L1 Objectives

- At the end of this lecture the student should be able to:
- (1) describe the general arrangement of the sympathetic and parasympathetic systems.
- (2) explain the consequences of activation of either of these systems on body functions.

Reference

- Ganong Review of Medical physiology, 23rd edition.
 Barret et al (eds). Mc Graw Hill, Boston 2010.
- Page 261-272.

- ANS has two subdivisions:
- Sympathetic and Parasympathetic
- Higher (CNS) controller of ANS is the Hypothalamus
- Posterior hypothalamus controls Sympathetic NS
- Anterior hypothalamus controls Parasympathetic NS
- These hypothalamic centers exert their effects via the motor centers of he brainstem & spinal cord

Moreover, the hypothalamic centers are influenced by impulses from the Cerebral Cortex and Limbic System.

Q:What are the main differences between the Somatic (Voluntary) Nervous System and Autonomic (Involuntary) Nervous System?

Somatic NS:

- Controls skeletal muscles, which are voluntary;
 & considered a somatic structures
- There is one lower motor neuron that directly innervates the skeletal muscle.
- The cell-body (soma) of this motoneuron is located inside the CNS, either ->
- (a) in the brain \rightarrow in case of cranial nerves, or
- (b) in the spinal cord \rightarrow in case of spinal nerves .
- The axon of the somatic motor neuron is myelinated, therefore fast-conducting.

Autonmic Nervous System (ANS):

- Controls smooth and cardiac muscles, both of which are involuntary. They are parts of the visceral organs
- There are 2 lower motor neurons arranged in series :
- (1) Preganglionic neuron: , whose cell-body is situated inside the CNS), arising from \rightarrow
- (a) spinal cord (thoracolumbar segments) \rightarrow in case of sympathetic sytem,
- (b) brain (cranial nerve autonomic nuclei) + spinal cord (sacral segments) → in case of parasympathetic system.
- The preganglionic fiber synapses within a ganglion with a 2^{nd} \rightarrow
- (2) <u>Postganglionic nerve</u>: whose cell-body is situated outside the CNS, in a ganglion.
- ✓ Axons of preganglionic nerves are myelinated, but those of postganglionic nerves are myelinated.
- \checkmark That is why postganglionic nerves are slower-conducting than preganglionic nerves .

Somatic NS: one efferent (motor) fiber that directly innervates the muscle

<u>ANS</u>: Two efferent (motor) neurons in series: preganglionic & postganglionic to innervate the target cell,

Unmyelinated Fiber Preganglionic neuron Ganglionic neuron **Dorsal root** (cell body) Preganglionic axon Smooth muscle or glands in visceral Postganglionic organ (e.g., axon intestine) Autonomic ganglion Ventral root Somatic motor neuron Skeletal CNS Myelinated Fiber muscle (spinal cord)

Sympathetic - Origin

Thoracolumbar: lateral horns of the spinal segments T1-L2.

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Parasympathetic - Origin

- ☐ Craniosacral Cell bodies of the motor nuclei of the cranial nerves III, VII, IX and X in the brain stem
- □ Second, third and fourth [S2-S4] sacral segments of the spinal cord
- Nerve fibers emerge from brain &
- sacrum cranio-sacral outflow

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Parasympathetic System

- ☐ The cranial nerves III, VII and IX affect the pupil and salivary gland secretion
- \square Vagus nerve (X) carries fibers to the heart, lungs, stomach, upper intestine and ureter
- ☐ The sacral fibres form pelvic plexuses which innervate the distal colon, rectum, bladder and reproductive organs.

Sympathetic (Thoracolumbar) System

- 1. Preganglionic nerves in exit the CNS from the thoracic and lumbar segments of the spinal cord →therefore, the sympathetic system is also called: "Thoraco-lumbar Outflow"
- 2. Preganglionic fibers are myelinated
- 3. The postganglionic neuron cell-bodies are located in paravertebral sympathetic ganglia, distant from their target tissues.
- 4. Postganglionic fibers are unmyelinated & longer than preganglionic fibers .
- 5. There is much divergence. The ratio (pre/post) being = 1:10;
- 6. This considerable divergence results in generalized and widespread effects on body functions when this system is activated.

Parasympathetic (Craniosacral) system

- 1. Preganglionic nerves exit the CNS from the cranium and sacral segments of the spinal cord . Therefore , the paraympathetic system is also called "Craniosacral Outflow"
- 2. Preganglionic fibers are myelinated
- 3. The postganglionic neuron cell-bodies are located in parasympathetic ganglia, close to their target tissues or embedded in their walls
- 4. Postganglionic fibers are unmyelinated & shorter than preganglionic fibers.
- 5. There is little divergence, the ratio of pre- to postgaglionic fibers is 1:3
- 6. This little divergence results in more specific , discrete and localized effects in the body when this system is activated .

General Effect of Sympathetic Activation (Stimulation)

- Sympathetic system is active during stress and physical activity, such as physical exercise (as in sport); and during increased mental & emotional activity such as in fear, anger, worry, anxiety, severe pain → preparing the body for fight or flight
- And promoting mechanisms which increase energy production & accelerate metabolism

Sympathetic

General Effect of Parasympathetic Stimulation

Balance between autonomic branches

Fight-or-flight

Parasympathetic activity

Sympathetic activity

- Parasympathetic system activities is related to the relaxed state and rest
- Conservation of body energy , and
- vegetative functions (nutritive , body-building , restorative anabolic functions & tissue repair) , & is more active during feeding , digestion & rest & sleep .

- □ Aacetylcholine (Ach) is secreted by →
- (1) all preganglionic nerves,
- (2) all postganglionic parasympathetic nerves, &
- (3) postganglionic sympathetic nerves that innervate sweat glands & blood vessels in skeletal muscle.
- √ The rest of postganglionic sympathetic nerves secrete norepinephrine (NE) .
- √ Adrenal medulla secretes epinephrine (EP)) (80%) and norepinephrine (NE) (20%).

KEY:

Preganglionic axons (sympathetic) Postganglionic To leight at axons (sympathetic)

Myelination

Preganglionic axons (parasympathetic)

Postganglionic axons (parasympathetic)

Effect of sympathetic & parasympathetic stimulation

Organ	sympathetic	parasympathetic
Pupil	Dilatation of pupil	Constriction of pupil
Heart	Increased heart rate Increased force of contraction	Decreased heart rate No effect
Systemic blood vessels	constriction	Little or no effect
Blood Pressure	Raised	Little or no effec
Lung (Bronchioles)	Dilation	Constriction 9/17/2011

Organ	sympathetic	parasympathetic
Glands: Nasal, Lacrimal, Salivary, Gastric, Intestinal, Pancreatic	Slight (small volume) secretion	Copious (large volume) secretion
Sweat Glands	Increased secretion	No effect
Digestive system muscles	Promotes retention (relaxation of wall muscles & contraction of sphincters)	Promotes emptying (contraction of wall muscles & relaxation of sphincters)
Urinary bladder	Promote retention (relaxation of wall & constriction of sphincter)	Promotes emptying (contraction of wall& relaxation of sphincter)
Blood sugar	raised	No effect

	A	
Gastrointestinal Tract (GIT)	100	
secretions	Decreased	Increased
	eated	
GIT motility (contraction of	Decreased	Increased
muscles in walls , Peristalsis)		20° CO.
		icho dioi.
Sphincters	Constricn	Relaxation
is	Therefore,	Therefore,
	sympathetic	parasympathetic
	system to GIT	system to GIT
O O	promotes	promotes digestion
CINC CINC	retention	& excretion
10 9n		
,0		

Blood vessels to skeletal muscles	Dilatation (cholinergic)	None
Genital System	Ejaculation	Erection
Adrenal medulla	Secretion of epinephrine & norepinephrine	No effect
Metabolism	Increased	No effect
Blood:	Increased	No effect
Coagulation	is mesmail	

Autonomic Neurotransmitter

- All preanglionic fibres (sympathetic and parasympathetic) secrete acetylcholine at the ganglia.
- All postganglionic parasympathetic fibers secrete acetylcholine at target organs.
- Most postganglionic sympathetic fibers secrete norepinephrine
- However → Postganglionic sympathetic fibers to sweat gland & blood vessels of skeletal muscles release acetylcholine
- All epinephrine in the bloodstream comes from the adrenal medulla. Postganglionic sympathetic nerves can not synthesize epinephrine from its precursor which is norepinephrine.

Adrenergic Receptors are either Alpha or Beta

- Alpha (a) adrenergic receptors are found in :
 - -Iris
 - Blood vessels
 - -GIT
- Beta (β) adrenergic receptors can be beta one (β 1) or beta 2 (β 1) \rightarrow found in :
 - -Heart (B1)
 - -Bronchioles (β1)
 - Skeletal muscle (B2)
 - $-GIT(\beta 2)$
- Norepinephrine mainly excite a (and β to a lesser extent)
- Epinephrine excites both a & B equally

Effects of Adrenergic Receptor Stimulation

Alpha (α) receptors	Beta (β) receptors
(1) Vasoconstriction	(1) Increased HR (β ₁)
(→ raised BP)	(2) Increased myocardial
(2) Pupillary dilatation	contractility (β ₁)
(Mydriasis)	2 and 3 above lead to increased cardiac output andconsequently lead to increased BP
	(3)Vasodilatation (β ₂)
	(4) Bronchiolar relaxation (β ₂)
	(5) Intestinal wall relaxation (β ₂)
	(6) Bladder wall relaxation (β ₂)

Alpha (α)	Beta (β)
receptors	receptors
-Vasoconstriction	-Vasodilatation (β_2)
-Iris dilatation	-Increased myocardial
-Intestinal	strength of contraction
sphincter	(β_1)
contraction	-Intestinal relaxation(β_2)
-Bladder	-Bladder wall relaxation
sphincter	(β_2)
contraction	
40	Oliver and the second s

Adrenergic receptors blockers

a blockers:

```
Prazosin (a 1)
Yohimbine (a 2)
```

· B blockers:

```
Propranolol (β1 & β2)
Atenolol (β 1)
```

Cholinergic Receptors

- Are divided into
- (1) Nicotinic \rightarrow found in all ganglia (i.e., the synapses between pre- & postganglionic of both sympathetic & parasympathetic divisions of the ANS
- (2) Muscarinic → found on all effector cells innervated
 (& stimulated) by →
- (1) postganglionic parasympathetic fibers, &
- (2) postganglionic cholinergic sympathetic nerves

<u>Drugs blocing cholinergic receptors:</u>
 Hexamethonium (block both types)
 Atropine (block muscarinic receptors)

-ND Pas creator This document PDF creator To remove this message purchase the product at www.smarth Dr. Creator.com