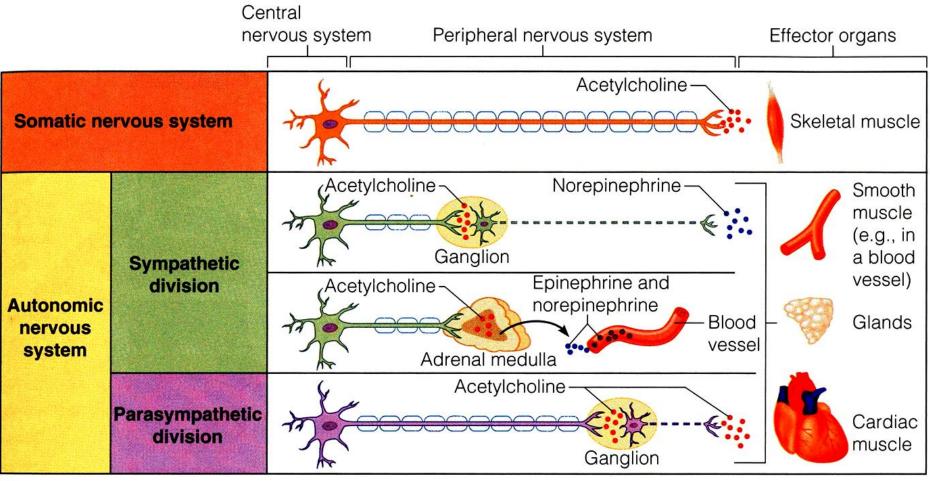

Aacetylcholine (Ach) is secreted by → ☐ (1) all preganglionic nerves,

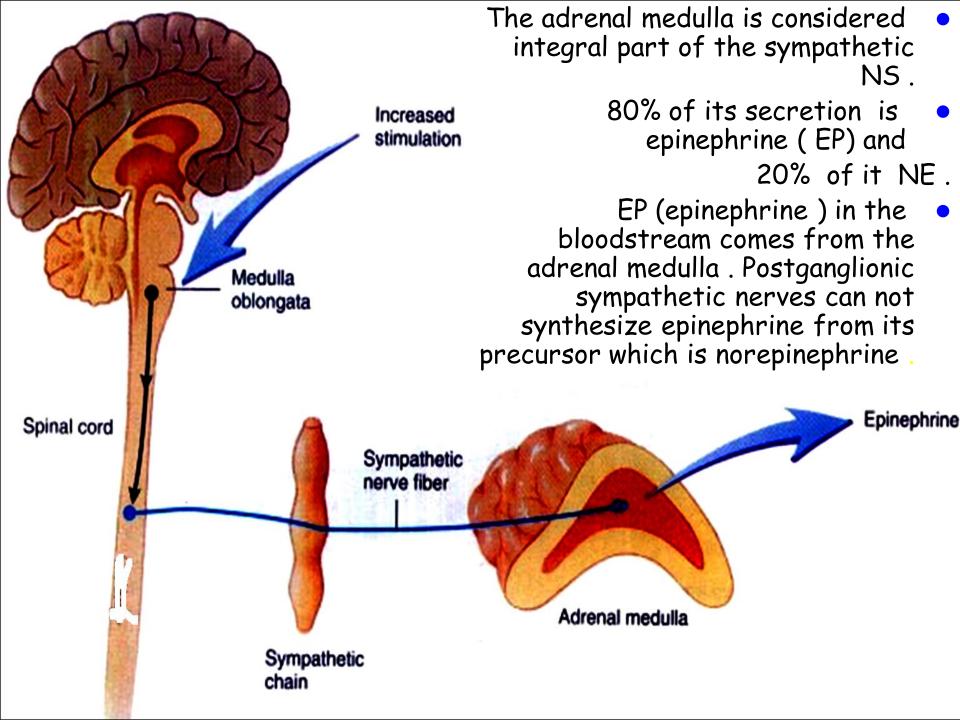

(2) all postganglionic parasympathetic nerves , &

(3) postganglionic sympathetic nerves that innervate sweat glands & blood vessels in skeletal

muscle.

The rest of postganglionic sympathetic nerves secrete norepinephrine (NE). ✓ Adrenal medulla secretes epinephrine (EP)) (80%) and norepinephrine (NE) (20%). ✓

KEY:


Preganglionic axons (sympathetic)

Postganglionic axons (sympathetic)

Myelination

Preganglionic axons (parasympathetic)

Postganglionic axons (parasympathetic)

Effect of sympathetic & parasympathetic stimulation

Organ	sympathetic	parasympathetic
Pupil	Dilatation of pupil	Constriction of pupil
Heart	Increased heart rate	Decreased heart rate
	Increased force of contraction	No effect
Systemic blood vessels	constriction	Little or no effect
Blood Pressure	Raised	Little or no effec
Lung (Bronchioles)	Dilation	Constriction

Organ	sympathetic	parasympathetic
Glands: Nasal, Lacrimal, Salivary, Gastric, Intestinal, Pancreatic	Slight (small volume) secretion	Copious (large volume) secretion
Sweat Glands	Increased secretion	No effect
Digestive system muscles	Promotes retention (relaxation of wall muscles & contraction of sphincters)	Promotes emptying (contraction of wall muscles & relaxation of sphincters)
Urinary bladder	Promote retention (relaxation of wall & constriction of sphincter)	Promotes emptying (contraction of wall& relaxation of sphincter)
Blood sugar	raised	No effect

Gastrointestinal Tract (GIT) secretions	Decreased	Increased
GIT motility (contraction of muscles in walls , Peristalsis)	Decreased	Increased
Sphincters	Constricn	Relaxation
	Therefore, sympathetic system to GIT promotes retention	Therefore, parasympathetic system to GIT promotes digestion & excretion

Blood vessels to skeletal muscles	Dilatation (cholinergic)	None
Genital System	Ejaculation	Erection
Adrenal medulla	Secretion of epinephrine & norepinephrine	No effect
Metabolism	Increased	No effect
Blood: Coagulation	Increased	No effect

Autonomic Neurotransmitter

- All preanglionic fibres (sympathetic and parasympathetic) secrete acetylcholine at the ganglia.
 - All postganglionic parasympathetic fibers secrete acetylcholine at target organs.
 - Most postganglionic sympathetic fibers secrete norepinephrine
 - However → Postganglionic sympathetic fibers to sweat gland & blood vessels of skeletal muscles release acetylcholine
- All epinephrine in the bloodstream comes from the adrenal medulla. Postganglionic sympathetic nerves can not synthesize epinephrine from its precursor which is norepinephrine.

Adrenergic Receptors are either Alpha or Beta

- Alpha (a) adrenergic receptors are found in:
 - Iris-
 - Blood vessels -
 - GIT -
- Beta (β) adrenergic receptors can be beta one (β 1) or beta 2 (β 1) \rightarrow found in :
 - Heart $(\beta 1)$ –
 - Bronchioles (\$1) -
 - Skeletal muscle (B2) -
 - $GIT(\beta 2)-$
 - Norepinephrine mainly excite a (and β to a lesser extent)
 - Epinephrine excites both a & B equally

Effects of Adrenergic Receptor Stimulation

Alpha (α) receptors	Beta (β) receptors
(1) Vasoconstriction	(1) Increased HR (β ₁)
(→ raised BP)	(2) Increased myocardial
(2) Pupillary dilatation	contractility (β ₁)
(Mydriasis)	1 and 2 above lead to increased cardiac output andconsequently
	lead to increased BP
	(3) Vasodilatation (β ₂)
	(4) Bronchiolar relaxation (β ₂)
	(5) Intestinal wall relaxation (β_2)
	(6) Bladder wall relaxation (β_2)

Alpha (α)	Beta (β)
receptors	receptors
-Vasoconstriction	-Vasodilatation (B ₂)
-Iris dilatation	-Increased myocardial
-Intestinal	strength of contraction
sphincter	β_1
contraction	-Intestinal relaxation(β_2)
-Bladder	-Bladder wall relaxation
sphincter	(β_2)
contraction	

Adrenergic receptors blockers

```
a blockers: •

Prazosin (a 1)

Yohimbine (a 2)

β blockers: •

Propranolol (β1 & β2)

Atenolol (β 1)
```

Cholinergic Receptors

- Are divided into .
- (1) Nicotinic → found in all ganglia (i.e., the synapses between pre- & postganglionic of both sympathetic & parasympathetic divisions of the ANS
- (2) Muscarinic \rightarrow found on all effector cells innervated (& stimulated) by \rightarrow
 - (1) postganglionic parasympathetic fibers, & •
 - (2) postganglionic cholinergic sympathetic nerves

Drugs blocing cholinergic receptors:

Hexamethonium (block both types)

Atropine (block muscarinic receptors)

END •