BLOOD PHYSIOLOGY

TEXTBOOK OF MEDICAL PHYSIOLOGYGUYTON & HALL 12TH EDITIONUNIT VI CHAPTERS 32-36

L2Topic: Hemoglobin, Iron,)

- **1. Essential elements for RBC formation**
- 2. Vitamin B12
- **3. Structure & functions of Hb**
- 4. Iron Metabolism.
- 5. Anemia
- 6. Polycythemia

Essential elements for RBCs formation and Maturation

Certain elements are essential for RBC formation and maturation:

- 1. Amino acid: formation of globin in Hb, sever protein deficiency leads to anaemia
- 2. Iron: formation of Hb, iron deficiency results in small cells (microcytic) anaemia

Essential elements for RBCs formation and Maturation cont

- 3. Vitamins
 - Vit B12 and Folic acid
 - Synthesis of nucleoprotein
 - Deficiency of both causes anemia
 - Vit B6, Riboflavin, nicotinic acid, biotin,
 Vit C, Vit E
- 4. Essential elements
 - Copper, Cobalt, zinc, manganese
- 5. Hormones
 - Androgens, Thyroid, cortisol & growth hormones
 - Deficiencies of any one results in anaemia

Vitamin B12 & Folic acid

- Important for DNA synthesis and final maturation of RBC
- Dietary source: meat, milk, liver, fat, green vegetables
- Deficiency of VIT B12 & folic acid leads to:
 - Failure of nuclear maturation & division
 - Abnormally large & oval shape RBC
 - Short life span
 - reduced RBC count & Hb content
 - Macrocytic (megaloblastic) anemia

Malabsorption of Vit. B12 Pernicious Anemia

- VB12 absorption needs intrinsic factor secreted by parietal cells of stomach
- VB12 + intrinsic factor is absorbed in the terminal lleum
- Causes of deficiencies
 - Inadequate intake
 - Poor absorption due to Intestinal disease
- Give rise to megaloblastic anaemia

HAEMOGLOBIN

- Hb molecules consist 4 chains each formed of heme & polypeptide chain (globin)
- Heme consist of protoporphyrin ring + iron
- Abnormality in the polypeptide chain abnormal Hb (hemoglobinopathies) e.g thalassemias, sickle cell

Functions of Hemoglobin

- Carriage of O2
 - Hb reversibly bind O₂ to form oxyhemoglobin, affect by pH, temperatre, H⁺
- Carriage of CO2
 - Hb bind CO₂ = carboxyhemaglobin
- Buffer

Iron metabolism

Iron is needed for the synthesis of Hb, myoglobin cytochrome oxsidase, peroxidase & catalase

- Total Iron in the body = 4-5g
 - 65% Haemoglobin
 - 5% other hems
 - 1% bound to transferrin (betaglobulin) in blood
 - 15-30% stored iron in the form of ferritin in the liver, spleen and bone marrow.

Iron absorption

- Iron in food mostly in oxidized form (Ferric)
- Better absorbed in reduced form (Ferrious)
- Iron in stomach is reduced by gastric acid, Vit.
 C.
- Rate of iron absorption depend on the amount of iron stored

Transport and storage of iron

- Iron is transport in plasma in the form of Transferrin (apotransferrin+iron)
- Iron is stored in two forms
 - Ferritin (apoferritin+iron)
 - Haemosiderin (insoluble complex molecule)
- Daily loss of iron is 0.6 mgm in male & 1.3mgm/day in females

Destruction of RBC

- **RBC** life span in circulation = 120 days
- Metabolic active cells
- Old cell has a fragile cell membrane, cell will rupture as it pass in narrow capillaries (spleen)
- Released Hb is taken up by macrophages in liver, spleen & bone marrow
- Hb is broken into its component:
 - Polypeptide broken to aminoacids to storage
 - Iron degraded to ferrtin and stored
 - Porphyrin ring transfer to bilirubin, secreted by the liver into bile

ANAEMIAS

– Definiation

- Decrease number of RBC
- Decrease Hb

Symptoms: Tired, Fatigue, short of breath, heart failure

Causes of anaemia

- 1. Blood Loss
 - acute→ accident (RBC return to normal 3-6w)
 - Chronic \rightarrow microcytic hypochromic anaemi (ulcer, worms)
- 2. Decrease RBC production
 - Nutritional causes
 - Iron \rightarrow microcytic anaemia
 - VB12 & Folic acid \rightarrow megaloblastic anaemia
 - Bone marrow destruction by cancer, radiation, drugs \rightarrow Aplastic anaemia.

Causes of anaemia

- **3.** Haemolytic \rightarrow excessive destrction
 - Abnormal cells or Hb
 - Spherocytosis
 - sickle cells
 - Incompatible blood transfusion
 - Erythroblastosis fetalis

Types of Anemia's

Microcytic anemia Macrocytic anemia

Polycythemia

Increased number of RBC

Types:

- 1. Primary (polycythemia rubra vera): uncontrolled RBC production
- 2. Secondary to hypoxia: high altitude (physiological), chronic respiratory or cardiac disease

Objectives

At the end of this lecture student should be able to:

- 1. Describe essential elements needed for RBC formation.
- 2. Describe the process of VB12 absorption and its malabsorption
- 3. Recognoise haemaglobin structure and its functions.
- 4. Discuss iron metabolism (absorption, storage and transport)

Objectives

- At the end of this lecture student should be able to:
- 5. Describe the fate of old RBC .
- 6. Describe anemia and its causes .
- 7. Recognise causes of polycythemia.