

College of medicine 1431

EMBRYOLOGY TEAM

- Sara Al-Mutairi
- Nora Al-Refaie
- Sara Al-khelb

Nawaf Modahi

DEVELOPMENT OF SKELETAL & MUSCULAR SYSTEM

OBJECTIVES

- Division of the intraembryonic mesoderm.
- Formation and division of somite.
- Derivatives of somite (sclerotome & myotome).
- Formation of somatic and splanchnic layers of lateral plate mesoderm and their derivatives.
- Difference between the intramembranous and intracartilaginous ossification and name the bones developed by these processes.
- The origin of skeletal, cardiac and smooth muscles in the body.

Muscles and **bones** raise from Intarembryonic **mesoderm** : between ectoderm and endoderm .

Intraembryonic Mesoderm

- Develops between Ectoderm & Endoderm EXCEPT in the central axis of embryo where NOTOCHORD is found.
- Differentiates into 3 parts:
 - 1. Paraxial mesoderm: on each side of notochord.
 - 2. Intermediate mesoderm
 - 3. Lateral mesoderm

- Paraxial mesoderm divides into units (somites).
- Lateral mesoderm divides by intraembryonic coelom into:
 - Somatic mesoderm (between ectoderm & coelom).
 - Splanchnic mesoderm (between endoderm & coelom).

somites are masses of mesoderm distributed along the two sides of the neural tube and that will eventually become dermis (dermatome), skeletal muscle (myotome), and vertebrae (sclerotome).

Development of the Bones

Based on the *mode of development*, there are two types of bones in the body:

type of bone	Cartilage bones	Membrane bones
develop via	intracartilagenous (endochondral ossification) A cartilage model first forms and is eventually replaced with bone	intramembranous ossification Bone forms directly from mesenchymal cells without the prior formation of cartilage
	cartilage formation > ossification of the cartilage > bone.	Membrane bone: model > directly the bone is formed.
Example.	formation of the bones of the axial & appendicular skeletons and the cranial base.	majority of bones of the face and skull
	Model: cells will give arise to bone.	

Development of Cranium (Skull)

Ossification of Long Bones

Bone age is a good index of general maturation. Bone age is determined by:

- 1. Appearance of ossification centers in diaphysis & epiphysis (specific for each bone & sex)
- 2. Disappearance of epiphyseal plate (specific for each bone & sex)

Summary of Development of Bone

Long bones are formed by cartilaginous ossification

Development of Joints

DEVELOPMENT OF MUSCLES

<u>All muscles</u> develop from **MESODERM** <u>EXCEPT</u> :

muscles of iris قزحية (eyeball) and myoepithelial cells of mammary (the secretive part of the gland)& sweat glands which develop from ECTODERM

Muscle type	develop from
Cardiac muscles	splanchnic part of lateral mesoderm
Smooth muscles	 In the <u>wall of viscera</u>: splanchnic part of lateral mesoderm In the <u>wall of blood & lymphatic vessels</u> from: somatic part of lateral mesoderm
skeletal muscles	myotomes of paraxial mesoderm <u>EXCEPT</u> some head & neck muscles which develop from mesoderm of pharyngeal arches

Myotome

Each myotome divides into:

- Dorsal Epaxial division
- Ventral Hypaxial division

- The Epaxial division gives rise to the muscles of the back (extensor muscles of the vertebral column)
- Ventral Hypaxial division gives rise to the muscles of the ventral body wall

Myoblasts migrate into limb and give Limb muscles

QUESTION 1

- Which one of the following group of muscles are <u>derivatives from epaxial</u> <u>division of myotomes</u>?
- 1. Muscles of back
- 2. Muscles of limbs
- 3. Muscles of viscera
- 4. Cardiac muscles

QUESTION 2

- Which one of the following bones ossifies by intramembranous ossification?
- 1. Vertebra
- 2. Humerus
- 3. Ribs
- 4. Mandible

QUESTION 3

- Regarding the ossification of long bones, which one of the following statement is correct?
- **1.** Primary ossification centre appears after birth.
- 2. Secondary ossification centre leads into ossification of diaphysis.
- 3. Long bones ossify by intramembranous ossification.
- 4. When epiphysis unites with diaphysis, growth of bone stops.

QUESTION 4

The base of the skull develops by ?

intramembranous ossification
 intracartilagenous ossification

All bones ossify by endochondral ossification <u>EXCEPT</u> ?

ribs
 Hip
 Clavicle
 vertebra

myoepithelial cells of mammary are develop from ?

- 1. ECTODERM 🗧
- 2. ENDODERM
- 3. MESODERM

GOOD LUCK COOD LUCK