

Q: What are the types of membrane ionic channels ?

- (1) Leak (Diffusion , Passive) channels: are pores in the cellmembrane which are open all the time , therefore ions diffuse through them according to the ion Concentration Gradient .
- Because the concentration of sodium outside the cell is more than inside , the direction of the Na⁺ chemical (concentration gradient) gradient is inward → and sodium continuously diffuses through the Na⁺ leak channels from outside (the extracellular fluid , ECF) to inside the cell (the intracellular fluid , ICF).
- On the other hand , because the concentration of K⁺ is higher inside the cell than outsideF \rightarrow therefore potassium continuously diffuses through the K⁺ leak channels from inside the cell to outside .

11

- (2) Voltage-gated channels : open when the cell-membrane is electrically activated .
- (3) Chemically-gated (ligand-gated) channels : opened by neurotransmitters at synapses .

6/9/2010

Na+ Nernst (Equilibrium) Potential
 The cell-membrane is practically considered as a semi-permeable membrane separating the ECF from the ICF. Nernst made a hypothesis which was later verified mathematically as well as in the physics laboratory under artificial conditions. Nernst , hypothetically speaking, said that if we suppose that (1) the ECF and ICF contained ONLY sodium ion , (2) and that the cell-membrane was freely permeable to Na+ : → then Na+ will diffuse down its concentration gradient to the I nside of the cell, carrying with it +ve charges , and progressively decreasing the negativity on the inner side of the membrane . As this goes on and on , and as the positive charges build inside , an opposing Electrical Potential begins to develop , tending to prevent the +ve Na+ from entering. This electrical potential will grow until it becomes strong enough to balance and counteract the concentration gradient which tends to push Na+ inside . When this electrical gradient (force) , which tends to drive Na+ outside = the concentration gradient (which tends to push Na+ in) → there will be no net Na+ movement across the membrane . The MP potential in that case is called Nernst Potential for Na+ (or Na+ Equilibrium or Diffusion Potential) = +61 mV . (The charge always refers to the inside of the cell) .

- Therefore, we can say that the RMP depends mainly on difference in concentration of potassium inside & ouside the cell
- Whereas , as we will see later , the value of the MP during the Ap depends mainly on difference in concentration of sodium inside & ouside the cell i.e., during the AP sodium has the upper hand

19

• Q : What is the effect of increasing extracellular potassium concentration on the RMP ?

6/9/2010

