Biochemistry Teamwork Lipoprotein Metabolism

Team Leaders			
Lama Mokhlis	Osamah Al-Jarallah		
Team Members			
Dalal Fatani	Khalid Al-Khamis		
AlAnood Asiri	Abdullah Al-Mazyad		
Noha Khalil	Turki Al-Otaibi		
Reem AlMansour	Abdulaziz Al-Shamlan		
HadeelHelmi			
AlHanouf AlDashaud			
Afnan AlRashoud			

Introduction:

A key element for cholesterol homeostasis is the balance between:

- Cholesterol transport from liver to peripheral tissues by LDL (bad cholesterol carrier)
- Reverse cholesterol transport from peripheral tissues to liver by HDL (good cholesterol carrier)

- <u>Imbalance</u> results in cholesterol deposition in the wall of blood vessels, thickening of the wall and narrowing of the lumen "Atherosclerosis"

Balance : LDL = HDL (Normal condition) Imbalance : LDL > HDL

(Abnormal condition)

Composition of LDL and HDL:

- Low density lipoprotein (LDL)

Mostly free cholesterol . (mainly free)

Apo- B 100 in LDL

Hint: LDL (β-Lipoprotein)

-High density lipoprotein (HDL)

Mostly cholesterol ester . (mainly esterify)

More % protein

More % phospholipids

Apo- A, C II and E in HDL

Hint: HDL (α - Lipoprotein)

Low-Density Lipoprotein (LDL) 5% 40% 40% 30% High-Density Lipoprotein (HDL) TRIACYLGLYCEROL PROTEIN PHOSPHOLIPIDS CHOLESTEROL AND CHOLESTEROL AND CHOLESTERYL ESTERS

Low Density Lipoproteins (LDL):

Produced in the circulation as the end product of VLDLs compared to VLDLs:

- It contains only apo B-100
- Smaller size and more dense (because of increase in protein)
- Less TG
- More cholesterol & cholesterol ester

Transport cholesterol from liver to peripheral tissues (function of LDL).

- Uptake of LDL at tissue level by:

LDL receptor-mediated endocytosis

Recognized by apo B-100 (apo B-100 which is the ligand and it is exist on the LDL's surface)

Endocytosis: A process of cellular ingestion by which the plasma membrane folds inward to bring substances into the cell. (It could be specific or non-specific)

When the LDL reaches to the peripheral tissues the cells recognize it by apo B-100 then Endocytosis will occur.

VLDL (catabolism) LDL

These are the steps:

Receptor-Mediated Endocytosis:

- LDL receptor:
- Cell surface glycoprotein High-affinity, tightly regulated
- -LDL/Receptor binding and internalization of the complex by endocytosis
- Release of cholesterol inside the cells for:
- 1- Utilization
- 2- Storage as cholesterol ester
- 3- Excretion
- Degradation of LDL: into amino acids, phospholipids and fatty acids.
- Degradation or recycling of receptor

LDL Receptor-Mediated Endocytosis:Regulation

A-Down-regulation:

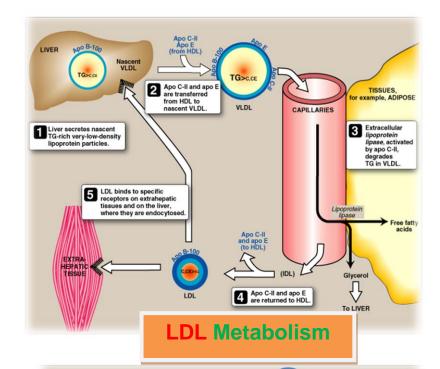
High intracellular cholesterol content

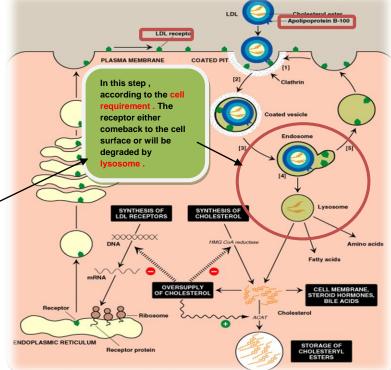
- -Degradation of LDL receptors
- Inhibition of recepotor synthesis at gene level

Decrease No. of receptor at cell surface

- -Decrease further uptake of LDL
- -Decrease de novo (new) synthesis of cholesterol_

B-Up-regulation:


Low intracellular cholesterol content


- Recycling of LDL receptors
- -Stimulation of recepotor synthesis at gene level

Increase No. of receptor at cell surface

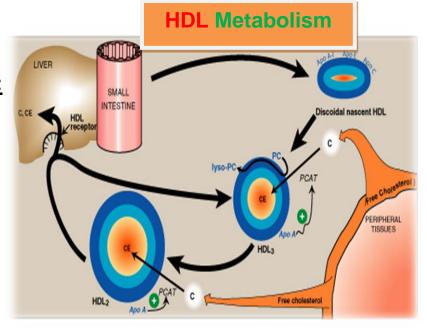
- -Increase further uptake of LDL
- -Increase de novo (new) synthesis of cholesterol

ACAT: stores excess cholesterol ester

LDL: Receptor-Mediated Endocytosis

If the cell needs more cholesterol, it will do **Up-regulation**.

If the cell does not need more cholesterol, it will do Down-regulation.


HMG-CoA reductase: a rate-controlling enzyme of cholesterol synthesis.

If the cell needs more cholesterol, the HMG-CoA reductase will be stimulated.

If the cell does not need more cholesterol, the **HMG-CoA reductase** will be inhibited.

High Density Lipoproteins (HDL):

- Produced by intestine and liver
- Nascent (newly formed) HDL:
 Disk-shaped
 Contains apo A-I, C-II and E
 Contains primarily phospholipid (PC)
- Mature HDL (HDL₂): First, HDL₃ collect cholesterol Converts cholesterol to cholesterol ester Spherical mature particle HDL₂

PC = Phosphatidylcholine/Lecithin

Functions of HDL:

- 1- Reservoir of apoproteins e.g., Apo C-II and E to VLDL
- 2- Uptake of cholesterol:

From other lipoproteins & cell membranes

(HDL is suitable for uptake of cholesterol because of high content of PC that can both <u>solublizes</u> cholesterol and acts as a source of fatty acid for cholesterol esterification)

3- Esterification of cholesterol:

Enzyme:PCAT/LCAT

Activator (coenzyme): Apo A-I

Substrate: Cholesterol, Co-substrate: PC

Product: Primary: Cholesterol ester. Secondary: (& Lyso-PC)

Why is HDL a Good Cholesterol carrier?

- Inverse relation between plasma HDL levels and Atherosclerosis How?
- Reverse cholesterol transport involves:
 Efflux of cholesterol from peripheral tissues and other lipoproteins to HDL₃

Esterification of cholesterol & binding of HDL₂ to liver and stroidogenic cells by scavenger receptor class B (SR-B1)

Selective transfer of cholesterol ester into these cells

Release of lipid-depleted HDL₃

Normal people : HDL level is normal .

PCAT or LCAT: It is the enzyme which converts the cholesterol to cholesterol ester

tissues into HDL.

A: Apo A

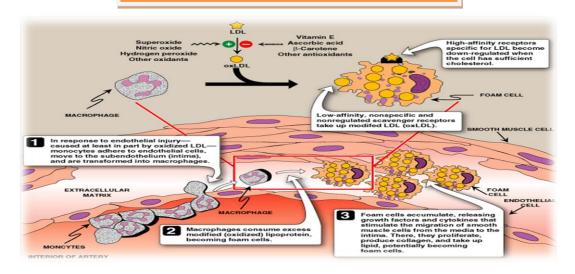
to maintain the movement from

Q: What is the ligand in HDL?

Atherosclerosis patients : HDL level is low .

NOTE ::: HDL3 has colesterol less than HDL2

Atherosclerosis:


Pathogenesis:

- -Modified (oxidized) LDL ... Oxidative stress
- -Uptake of oxLDL by macrophage scavenger receptor:
- -Scavenger receptor class A (SR-A)Low-affinity, non-specific receptor
- -Un-regulated receptor
- -Foam cell transformation

Atherosclerotic plaque formation

Oxidative LDL is more dangerous than LDL

Athersclerotic plaque Formation

Comparison between the receptors :

SR- B1 receptor	LDL receptor	SR-A receptor
In liver and stroidogenic cells	In peripheral tissue	In macrophages
For HDL	For LDL	For oxiLDL
Selective	Selective	Not selective
	High-affinity	Low-affinity
	regulated	Un-regulated

Foam cell: is the basic unit for Atherosclerotic plaque.

Laboratory Investigation of Atherosclerosis:

Serum lipid profile:

-10-12 hours (O/N) fasting

Measurement of

-Serum triglyceride level

(reflect chylomicron and VLDL levels)

-Serum total cholesterol level

(reflect LDL and HDL levels)

- -Serum HDL-cholesterol level
- -Serum LDL-cholesterol level
- -Others:- (not usually done unless the doctor asks for it)
- Serum lipoprotein electrophoresis
- -Serum apoprotein levels e.g., apo-B

<u>LDL-related Diseases :</u> <u>Hyperlipoproteinemia:</u>

Type IIa Hyperlipoproteinemia (Familial hypercholestrolemia)

Functional defect of LDL-receptor

(The receptor shape has changed then, it will not receive the LDL)

Increase plasma LDL level & therefore, plasma cholesterol level

(The LDL level will increase in the plasma then , the cholesterol level will increase in the circulation)

Pre-mature atherosclerosis and increased

risk for early-onset ischemic heart diseases

Associated with the presence of tendon xanthomas on hands and ankles

Xanthomas: A tumor composed

of lipid-laden foam cells,

which are histiocytes

containing cytoplasmic lipid material.

Review Question

1-A 2-B 3-C