Renal Blood flow; Renal Clearance

Dr Sitelbanat

Objectives

At the end of this lecture student should be able to describe:

- Renal blood flow
- Autoregulation of GFR and RBF
- Regulation of GFR
- The Calcuation of Clearance

Renal Blood flow

- In average adult RBF = 1.1l/min
 PAH an organic acid used for measurement of RBF
- In one renal circulation/min PAH is almost completely removed from the plasma & excreted in urine
- PAH clearance = volume of plasma cleared from PHA/min = RPF/min

Calculation of renal blood flow

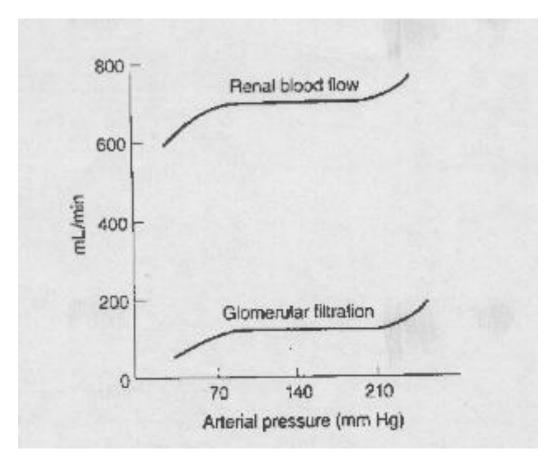
- RPF= the amount of a PAH excreted per unit time
- ~ 90% of PAH in arterial blood is removed by the kidney
- Clearance of PAH = <u>[U]_{РАН} x V_{min}</u> = 630ml/min [P]_{РАН}
- =<u>effective renal plasma flow (ERPF)</u>

Calculation of renal blood flow cont.

- Actual renal <u>plasma</u> flow (RPF) = ERPF/ extraction ratio = 630 / 90 * 100 = 700ml/min
- Calculate the renal <u>blood</u> flow (RPF)

 $RBF = \underline{RAP - RVP}$

Total Renal vascular pressure


Autoregulation

- Feed back mechanism to keep RBF and GFR relatively constant despite marked changes in ABP
- Range of autoregulation is between 75-160 mmHg ABP
- \blacksquare < 60 mmHg $\rightarrow \downarrow$ GFR \rightarrow Kidney shut down

Autoregulation of GFR

- Changes diameters of afferent, efferent arteriole, and glomerular capillaries
 - In the drop pressure results in dilation of afferent arteriole, dilation of glomerular capillaries and constriction of efferent arteriole.
 - Rises in pressure results in constriction of afferent arteriole.

Autoregulation of GFR & RBF

Three processes controlling GFR

- 1. Myogenic autoregulation
- 2. Hormonal regulation (tubuloglomerular & renin-angiotensin)
- 3. Autonomic regulation (extrinsic)

1. Myogenic autoregulation

The ability of blood vessels to resist stretching

■↑ hydrostatic Pressure → stretching vessels wall → reflex contraction

2. Hormonal Regulation

- Tubuloglomerular feedback
- Renin-angiotensin Aldsterone
- **Other Hormones**

Tubuloglomerular feedback

- \downarrow GFR \rightarrow slow flow \rightarrow \uparrow Nacl reabsoption $\rightarrow \downarrow$ Nacl at macula densa:
 - 1. \uparrow renin \rightarrow \uparrow angiotensin II \rightarrow efferent vasoconstriction \rightarrow \uparrow GFR 2. Afferent dilation \rightarrow \uparrow GFR ?

Renin-angiotensin Aldsterone

- Renin is released into plasma
 - low ECF Na or low ECV
 - ■↑ sympathetic (hypotension)
 - $\blacksquare \downarrow$ afferent pressure
- Renin acts on angiotensinogen \rightarrow Angiotensin I
- Angiotensin converting enzyme (ACE): Angiotensin I \rightarrow angiotensin II
- angiotensin II act on adrenal cortex → aldosterone secretion→ ↑ Na reabsorption in distal & collecting duct of nephron
- H and K secretion in exchange for Na

Other Hormonal Regulator of GFR

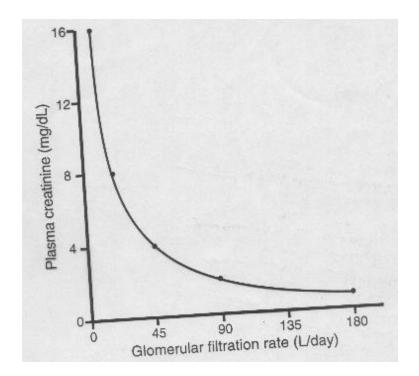
- 1. Adrenaline, noradrenaline \rightarrow affarent vasoconstriction $\rightarrow \downarrow$ GFR
- 2. Angiotensin II \rightarrow Vasoconstriction of efferent $\rightarrow \uparrow$ GFR
- 3. Prostaglandins, bradykinin affarent vasodilator $\rightarrow \uparrow$ GFR

Autonomic Regulation of GFR

- In normal condition Sympathetic NS has little influence on GFR
- \downarrow BP (hemorrhage) \rightarrow \uparrow sympathetic \rightarrow vasoconstriction of renal artery \rightarrow \downarrow RBF \rightarrow vasoconstriction of afferent \rightarrow \downarrow GFR TO DIVERT BLOOD TO VITAL ORGANS

Clearance

- volume of plasma completely cleared of a substance by both kidneys per unit time
- Clearance equation


Renal clearance for different substances various between 0-600ml/min

Inulin clearance & GFR

- 120 ml/min
- As inulin is
 - freely filtered
 - not reabsorbed or secreted
- Inulin clearance = GFR

Creatinine clearance & GFR

- Creatinine is an endogenous substance used routinely to measure GFR
- Completely filtered, but secreted in small quantity
- Inverse relationship between GFR & plasma creatinine

Glucose & urea clearance

- Renal clearance of glucose=zero
- Filtered, completely absorbed, no glucose in urine
- [U]_g x V_{min} = zero
- Urea clearance = 60 ml/min, urea filtered, partially reabsorbed

Inulin clearance vs. clearance of other substance (S)

- C_x = inulin clearance → Substance x is filtered but not absorbed or secreted
- C_y < inulin clearance → Substance y is filtered and partially absorbed
- C_z > inulin clearance → Substance z is filtered and secreted

Summary

- 1. Renal blood flow
- 2. Calculation of renal blood flow
- 3. Autoregulation
 - Myogenic
 - Hormonal regulation (tubuloglomerular & reninangiotensin)
 - Autonomic regulation
- 4. Clearance
 - 1. Inulin
 - 2. Creatinine
 - 3. Glucose \$ urea