
Tubular Reabsorption

Guyton Dr Sitelbanat Awadalla

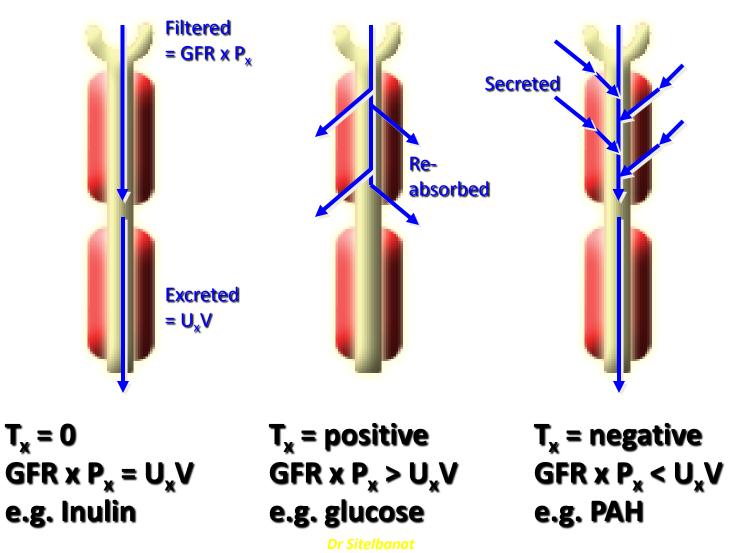
Objectives

At the end of this lecture student should be able to describe:

- Mechanism of urine formation
- Renal tubular transport
- Nacl re-absoption in PCT
- Water re-absoption in PCT
- Glucose and amino acid re-absoption in PCT

Filtration, Reabsorption and excretion rate

	Filtered	Absorb.	Excreted	A/F %
Glucose (g/d)	180	180	0	100
HCO3 (meq/d)	4320	4318	2	99.98
Na (meq/d)	25560	25410	150	99.4
Cl (meq/d)	19440	19260	180	99.1
K (meq/d)	756	664	92	87.7
Urea (g/d)	46.8	23.4	23.4	50
creatinine (meq/d)	1.8	0 Dr Sitelbanat	1.8	0


Calculation of tubular reabsorption or secretion from renal clearances

Reabsorption or secretion = Quantity Filtrated – Quantity excreted

Quantity Filtrated = $P_x \times GFR$

Quantity Excreted = $U_x \times V$

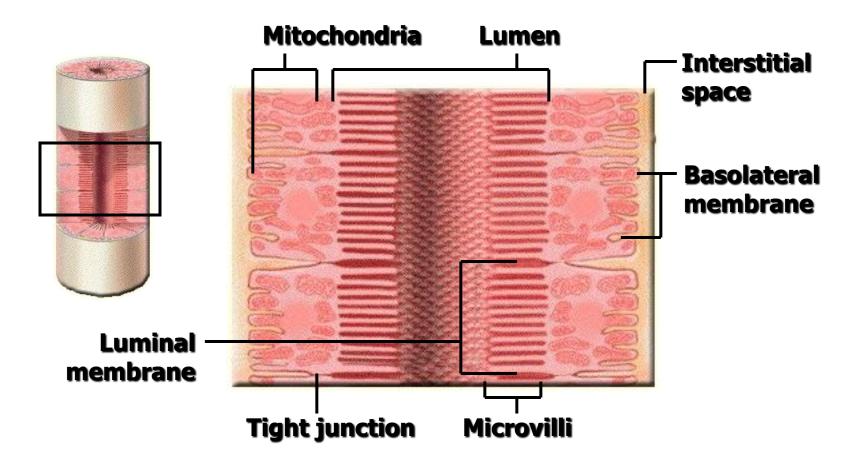
Calculation of renal transport (Tx) $T_x = GFR \times P_x - U_xV$

Calculation of Na reabsorption Example

Plasma Na concentration = 140 mEq/L
GFR (inulin clearance) = 125 ml/min
Urine flow rate = 1 ml/min
Urine concentration of Na= 70 mEq/L

Calculate the amount of Na transported

Types of transport

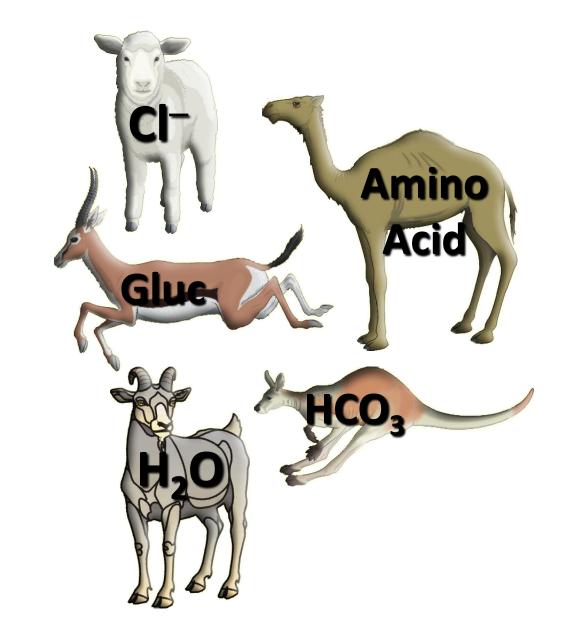

 Transcellular: Across apical basal renal cell LUMEN BLOOD Primary active transport - Secondary active transport – Passive: ion channel Paracellular: Through tight junction Passive diffusion

Proximal convoluted tubule

- High capacity for reabsorption
 - Special tubular epithelial cell
 - Metabolically active (lot of mitochondria)
 - Brush border (surface area)
 - Tight junction is not so tight
 - Contain a lot of carrier protein

Cells of the Proximal Convoluted Tubule (PCT)

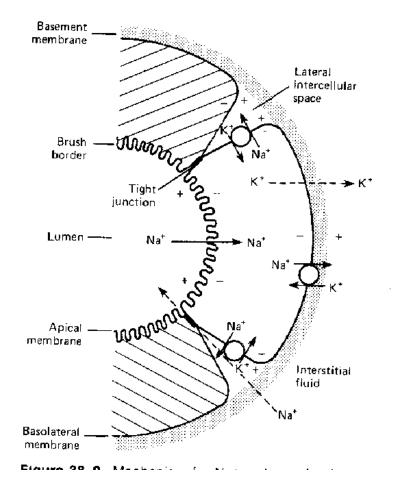
Simple cuboidal cells with brush border Highly permeable to water and many solutes.



Substances absorbed in PCT

- Tubular absorption
 - Sodium
 - Chloride
 - Glucose
 - Water
 - Amino acid
 - Bicarbonate
 - Phosphate
 - Urea

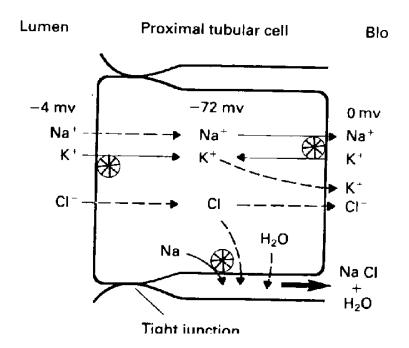
- Secretion
 - PAH
 - H⁺
 - K



Sodium reabsorption in PCT

- 65-70% of filtered sodium is reabsorbed in PCT
- Followed by water & chloride
- Iso-osomotic absorption (equal quantity of solute & water)
- Important for the absorption of
 - -Glucose
 - -Amino acids
 - phosphates

Passage of sodium absorption


Dr Sitelbanat

Mechanism of sodium reabsorption

- Basolateral membrane
 - Na+/K+ Atpase
 - 3 Na / 2 K
 - K leak out of the cell

Results in

- Low intracellular Na Concentration
- high peritubular osmolality

Mechanism of sodium reabsorption

- Na enter the cell passively following
 - Electrical difference (inside the cell -70mv, lumen -4mv)
 - Na concentration differences (140 mEq/L to 12mEq/L)
- Na enter the cell across the luminal membrane:
 - Cotransport with glucose, amino acids
 - Na in exchange H (counter transport)
 - Na channel

Chloride reabsorption

• Cl reabsorbed down concentration gradient following the positively charge Na

Water reabsorption

• 60-70% of filtered water is reabsorped in PCT

 Active pump of Na from renal cell to peritubular space results in increases the osmolality of peritubular space

- Drag water by osmosis
- Filterate remain iso-osmotic (~equal quantity of water & solute are absorbed)

Glomerulo-tubular balance

- Feed back mechanism to keep a fixed percentage of reabsorbed glomerular filtrate
- The higher the filtration in the glomerulus → the higher oncotic pressure in efferent & peritubular capillaries → ↑ reabsorption in PCT

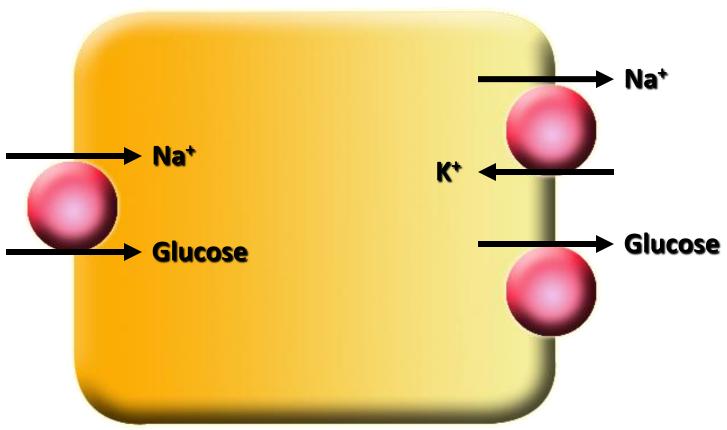
Glucose reabsorption

- In healthy adult all filtered glucose is reabsorbed and no glucose will appear in urine
- If plasma glucose (P_G) reach 200 mg/dl, glucose appear in the urine – this level is the "Renal threshold"
 - -200mg/dl in arterial; 180 mg/dl in venous

Glucose reabsorption

- The amount of reabsorped glucose at very high filtered glucose, remains constant, this is called tubular transport maximum for glucose (Tm_G)= 375 mg/min (female 300mg/min)
- At this maximum transport, all the glucose carriers are saturated and no more glucose can be transported

Mechanism of Glucose reabsorption


- Secondary active transport
- Luminal membrane

– Cotransport with Na

Basolateral membrane
 – GLUT 1 & 2

LUMEN

Cell of the proximal tubule

Cellular Mechanism for Glucose Reabsorption

Dr Sitelbanat

BLOOD

Amino acid reabsorption

- All filtered AAs are reabsorbed in PCT
- Luminal membrane

– Cotransport with Na

- Basolateral membrane
 - diffusion