RENAL PHYSIOLOGY ACID BASE BALANCE

DR SYED SHAHID HABIB MBBS DSDM FCPS Associate Professor Dept. of Physiology College of Medicine & KKUH

ACIDS

Acids dissociate in solution to liberate free H+ ions

- STRONG acids (eg. Hydrochloric acid i.e. HCI) completely dissociate (to H+ and CI-)
- -WEAK acids (H2CO3) have more limited dissociation

BASES

- Bases are ions or molecules that bind free H+ and remove it from solution
 - eg. HCO3- combines with H+ to form H2CO3
- Alkali is a molecule formed by one of the alkaline metals. (Na, K, Li) with a highly basic ion such as a hydroxyl ion (OH–).

	рH	
SC	CA	Ε

Cate	H			F	lcid	ogilo s en lo pi		iorti Iorti	/	Neu	tra	l p	H 7	ential telle F	
	Н	H						/		equal	num	ber of	hydr	ogen	
	H	н	н		/	-		1		(nure	wate	r)	115		
invortes (н	н	н	н	U					(purc	wate	in sta			
inte	н		- 		u u	Ц	1								
	п		ü		L L	Ц	н	h (d t	pagard						
		Ц	н	н	н	н	н	н	186				kal	ino	
	н	H H	н	н	н	н	Н	H	H	No. Va		A	Kai	ine	
	н	н	н	Н	Н	H	Н	н	Н	H	The loss	1			
	н	н	Н	н	н	Н	H	H	н	Н	Н		-	_	
	н	н	Н	н	н	Н	Н	Н	H	Н	Η	H			
	H	Н	Н	Н	Η	Н	Н	Н	H	H	Н	Н	Н	(Bara)	1
	Н	Н	Н	Н	Η	Н	Η	Н	H	Н	H	Η	Η	Н	100
рН	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	-	OH	OH	OH	OH	OH	OH	OH	OH	OH	OH	OH	OH	OH	OH
		basil	OH	OH	OH	OH	OH	OH	OH	OH	OH	OH	OH	ОН	OH
			i ne	OH	OH	OH	OH	OH	ОН	OH	ОН	OH	OH	OH	OH
				005	OH	OH	OH	ОН	OH	OH	OH	OH	OH	OH	OH
					189744	OH	OH	OH	OH	OH	OH	OH	OH	OH	ОН
							OH	OH	ОН	OH	OH	OH	ОН	OH	OH
								ОН	OH	OH	OH	OH	OH	OH	OH
		-							ОН	OH	OH	OH	OH	OH	
рН	7 =	10 ⁻⁷ r	noles /	liter o	f hydro	ogen io	ns	andr		OH	OH	OH			
		(pH 6	has 1	0 X as	many	hydrog	gen ior	IS)		nd one	Un		ОН	ОН	ОН
												UH	OH	ОН	ОН
													-	ОН	ОН
Carbonic Acid — Bicarbonate Buffer System : OH OH															
Excess Hydrogen lons (bicarbonate functions as a weak base) : $H^+ + HCO_3^-$ (weak base) \longrightarrow $H_2CO_3^-$ (weak acid)															
Shortage of Hydrogen lons (carbonic acid functions as a weak acid):															

H₂CO₃ (weak acid) \longrightarrow H⁺ + HCO₃ (weak base)

рН

pH is the log of the reciprocal of the H+ ion concentration
 pH = log (1 / [H+])
 OR
 pH = - log([H+])

WHY WE EXPRESS IT AS pH?

рН

- The normal H ion concentration in blood is 40 nmol/l or 0.00004 mmol/l
- For example for Na it is 140 mmol/l
- Because H ion concentration in blood is so low that it is expressed in negative log to the base 10 of H ion concentration

40 nmol/l or 0.00004 mmol/l is equal to pH 7.4

pH and H⁺ ion concentration

рН	H ⁺ ion in nmol/lit
• 6.0	• 1000
• 7.0	• 100
• 8.0	• 10
• 9.0	• 1.0

One point change in pH results in a ten fold change in H⁺ ion conc.

	[OH [:]] concentration		[H [±]] concentration		
	<u>(mol/L)</u>	<u>рН</u>	<u>(mol/L)</u>		
1 x 10 ⁻¹⁴	0.00000000000001	0	1	1 x 10 ⁰	
1 x 10 ⁻¹³	0.0000000000001	1	0.1	1 x 10 ⁻¹	
1 x 10 ⁻¹²	0.00000000001	2	0.01	1 x 10 ⁻²	
1 x 10 ⁻¹¹	0.0000000001	3	0.001	1 x 10 ⁻³	Increasing
1 x 10 ⁻¹⁰	0.000000001	4	0.0001	1 x 10 ⁻⁴	acidity
1 x 10 ⁻⁹	0.00000001	5	0.00001	1 x 10 ⁻⁵	
1 x 10 ⁻⁸	0.0000001	6	0.000001	1 x 10 ⁻⁸	
1 x 10 ⁻⁷	0.0000001	7	0.0000001	1 x 10 ⁻⁷	Neutral
1 x 10 ⁻⁶	0.000001	8	0.0000001	1 x 10 ⁻⁸	
1 x 10 ⁻⁵	0.00001	9	0.00000001	1 x 10 ⁻⁹	
1 x 10 ⁻⁴	0.0001	10	0.000000001	1 x 10 ⁻¹⁰	Increasing
1 x 10 ⁻³	0.001	11	0.0000000001	1 x 10 ⁻¹¹	basicity
1 x 10 ⁻²	0.01	12	0.00000000001	1 x 10 ⁻¹²	
1 x 10 ⁻¹	0.1	13	0.0000000000001	1 x 10 ⁻¹³	
1 x 10 ⁰	1	14	0.00000000000000	1 x 10 ⁻¹⁴	

WHAT IS THE NORMAL BODY pH?

7.35 - 7.45

	H ⁺ Concentration (mEq/L)	pН
Extracellular fluid Arterial blood Venous blood Interstitial fluid	4.0×10^{-5} 4.5×10^{-5} 4.5×10^{-5}	7.40 7.35 7.35
Intracellular fluid	1×10^{-3} to 4×10^{-5}	6.0 to 7.4
Urine	3×10^{-2} to 1×10^{-5}	4.5 to 8.0
Gastric HCl	160	0.8

IMPORTANCE

ACTIVITIES OF ALL ENZYME SYSTEMS IN THE BODY IS INFLUENCED BY HYDROGEN IONS

	H ⁺ Concentration (mEq/L)	pH
Extracellular fluid Arterial blood Venous blood Interstitial fluid	$\begin{array}{c} 4.0 \times 10^{-5} \\ 4.5 \times 10^{-5} \\ 4.5 \times 10^{-5} \end{array}$	7.40 7.35 7.35
Intracellular fluid	1×10^{-3} to 4×10^{-5}	6.0 to 7.4
Urine	3×10^{-2} to 1×10^{-5}	4.5 to 8.0
Gastric HCl	160	0.8

ACID PRODUCTION

H+ is continually produced by metabolic activity:

 Volatile acids: (e.g. carbonic acid, H2CO3; formation catalyzed by carbonic anhydrase)

H+ + HCO3- → H2CO3 → CO2 + H2O

ACID PRODUCTION (Cont.)

- Non-volatile acids: ingested acids and products of fat, amino acid, and sugar metabolism:
 - e.g. phosphoric acid, lactic acid, butyric acid
- Incomplete Carbohydrate and Fat Metabolism Produces Nonvolatile Acids (strenuous exercise, hemorrhagic or cardiogenic shock, uncontrolled diabetes mellitus, starvation, and alcoholism)

ACID LOAD

- Amino Acid Metabolism yields about 50 meq/day for example H2SO4, HCI, and H3PO4
- CO2 production yields 12,500 meq/day300 L of CO2
- Normal daily diet yields 80 meq/day

HENDERSON-HASSELBACH EQUATION

Relates pH to the Ratio of the Conc. of Conjugate Base and Acid

$$pH = pK \times \log \frac{Base}{Acid}$$

The ratio of dissociated to undissociated forms of an acid is CONSTANT (K) and shows the Strength of an Acid K = [H+][A-] / [HA] eg: K = [H+][HCO3-] / [H2CO3]

 $K' = \frac{H^+ \times HCO3^-}{H2CO3}$

 $H^{+} = K' \times \frac{H2CO3}{HCO3}$

 $H^{+} = K \times \frac{0.03 \times CO^{2}}{HCO3}$ $H^{+} = K \times \frac{0.03 \times CO^{2}}{HCO3}$

$-\log H^{+} = -\log K \times -\log \frac{0.03 \times CO^{2}}{HCO3}$

 $pH = pK \times \log \frac{HCO3}{CO^2}$

The Henderson-Hasselbalch Equation Relates pH to the Ratio of the Concentrations of Conjugate Base and Acid

Dissociation Constant

pK (also a log) is where concentration of both components of the buffer are equal.

(REMEMBER to maintain plasma pH at 7.4, there needs to be much more HCO3- than H2CO3)

•pH = pK x Base/Acid •pH = pK x 50/50 •pH = pK

[HCl) (right to left) or strong base (NaOH) (left to right) was added and the resulting solution pH recorded (y-axis). Notice that buffering is best (i.e., the change in pH upon the addition of a given amount of acid or base is least) when the solution pH is equal to the pK_a of the buffer.

NORMAL OPERATING POINT FOR BICARBONATE/CARBONIC ACID BUFFER SYSTEM

ACIDOSIS

ALKALOSIS

BUFFER SYSTEMS

- Buffer is a solution which minimizes pH changes when acid or base is added to a solution (any substance that can reversibly bind H+)
- It consists of a WEAK ACID and its conjugate base (or a weak base and its conjugate acid)
- For example in Bicarbonate buffer system H2CO3 is the weak acid and NaHCO3 is its conjugate base.

Buffers Promote the Stability of pH

BUFFER POWER

- Depends on relative amount of Acid and Base in a Buffer solution
- It is maximum when both are in equal amounts
- Absolute concentration of Buffers in body fluids is also important
- If the pH of medium is near pK of buffer system it becomes more effective

pH = pK + log [Base] / [Acid]

pH = pK + log HCO3- / H2CO3

pH = 6.1 + log 20 / 1

It is not only the amount of base and acid that is important but the ratio between them must remain constant

TABLE 25.1 Major Chemical pH Buffers in the Body

Buffer

Extracellular fluid Bicarbonate/CO₂

Inorganic phosphate Plasma proteins (Pr) Intracellular fluid Cell proteins (e.g., hemoglobin, Hb) Organic phosphates

Bicarbonate/CO₂

Bone

Mineral phosphates Mineral carbonates

Reaction

 $CO_{2} + H_{2}O \Leftarrow H_{2}CO_{3} \Leftarrow H^{+}$ $+ HCO_{3}^{-}$ $H_{2}PO_{4}^{-} \Leftarrow H^{+} + HPO_{4}^{2-}$ $HPr \Leftarrow H^{+} + Pr^{-}$

 $HHb \Rightarrow H^+ + Hb^-$

```
Organic-HPO<sub>4</sub><sup>-</sup>\RightarrowH<sup>+</sup> +
organic-PO<sub>4</sub><sup>2-</sup>
CO<sub>2</sub> + H<sub>2</sub>O\RightarrowH<sub>2</sub>CO<sub>3</sub>\RightarrowH<sup>+</sup>
+ HCO<sub>3</sub><sup>-</sup>
```

 $H_2PO_4^{-} \lneq H^+ + HPO_4^{2-}$ $HCO_3^{-} \lneq H^+ + CO_3^{2-}$

pH DEFENCE MECHANISMS IN THE BODY

- Chemical buffering (First Line) Acid-Base buffer systems of the body fluids
- Respiratory response (Second Line) respiratory center
- Renal response (Third Line) Kidneys [slow to respond & powerful]

BUFFER SYSTEMS

BODY BUFFER SYSTEMS

- BICARBONATE/CARBONIC ACID: HCO3- /H2CO3
 - pK = 6.1
 - major plasma buffer
- PHOSPHATE: H2PO4 / HPO4-
 - pK = 6.8
 - major intracellular and urine buffer
 - conc. in ECF is only 8 % of bicarbonate buffer

<u>IMPORTANT NOTE:</u> A pKa of 6.8 Makes Phosphate a Good Buffer in ECF however, its plasma conc. is low (about 1 mmol/L) unlike HCO3- which is 24 mmol/L

BODY BUFFER SYSTEMS

- AMMONIA: NH3 / NH4+
 - pK = 9.0
 - used to buffer the urine
- PROTEINS (Amphoteric) : Prot / H Prot
 - important in ICF
- HEMOGLOBIN: Hb / HHb
 - important in ICF

Respiratory Regulation of Acid-Base Balance

Effect of blood pH on rate of alveolar ventilation.

RENAL CONTROL

About 80 to 90 per cent of the bicarbonate reabsorption (and H+ secretion) occurs in the proximal tubule

HYDROGEN ION SECRETION

HYDROGEN ION SECRETION

PHOSPHATE BUFFER SYSTEM

AMMONIA BUFFER SYSTEM

AMMONIA BUFFER SYSTEM

The HCO3/CO2 system. This system is remarkably effective in buffering added strong acid in the body because it is open

ARTERIAL BLOOD ANALYSIS

ANALYTE	REF. RANGE
рН	$\textbf{7.4} \pm \textbf{0.05}$
PO 2	75-100 mmHg (10.0-13.3 kpa)
PCO ₂	36.0-46.0 mmHg (4.8-6.1 kpa)
HCO ₃ -	22.0-26.0 mmol/L
O ₂ Saturation	95-100 %
Base Excess	± 2.5 (Normal)

DISORDER	IMORTANT CAUSES
Respiratory Acidosis	 inadequate ventilation
Respiratory Alkalosis	 hyperventilation
Metabolic	 diabetic ketoacidosis,
Acidosis	lactic acidosis
	 ethylene glycol or salicylate poisoning (elevated anion gap)
	 diarrhea, ileostomy (normal anion gap)
Metabolic	 excessive alkali ingestion (antacids)
Alkalosis	 H+ loss (vomiting)

UNCOMPENSATED

ACIDOSIS				
RESPIRATORY	METABOLIC			
H+ 🛉	H+ 🕈			
pH 🚽	pH 👃			
CO2 †	CO2 N			
HCO3 N	HCO3 🕇			
ALKA	LOSIS			
RESPIRATORY	METABOLIC			
H++	H+ 🔶			
pH 🕇	pH 🕈			
CO2	CO2 N			
HCO3 N	HCO3			

COMPENSATE

ACIDOSIS AND ALKALOSIS

	рН	H+	PCO2	HCO ₃ -
Normal	7.4	40 nEq/L	40 mmHg	24 meq/L
Respiratory Acidosis	Ļ			
Respiratory Alkalosis		Ļ	Ļ	Ļ
Metabolic Acidosis	Ļ		Ļ	Ļ
Metabolic Alkalosis		ł		

ANION GAP = {[Na+] + [K]} - {[HCO3-] + [Cl-]} 10-18 mmol/L

High anion gap metabolicacidosis Methanol intoxication Uremia Lactic acid Ethylene glycol intoxication *p*-Aldehyde intoxication Ketoacidosis Salicylate intoxication Normal anion gap metabolic acidosis Diarrhea Renal tubular acidosis Ammonium chloride ingestion

