Physiology Team 431

Team leaders

- Mohammed Asiri
- Nour Al-Khawajah
- Yafa Al-shamlan
- Sara Al-anazy
- Lama Mokhlis
- Tmader alaofi
- Hayfa alabdulkareem
- Dalal fatani
- Jomanah alshammari
- Shehanah alomair
- Alaa Al-anazi
- Ghaidah Al-sugair
- Manar aljebreen
- Rand Al-hwil
- Afnan Al-hargan

- Abdullah Al-Towim
- Khalid Al Mohaimedi
- AbdulRahman Al-Bakr
- Fahad Al-showishi
- Saad Al-Mdemig
- Mohammed Al Numeir
- Majid Al-Oriny
- Abdullrahman Alshahrani
- Tariq Al-Otaibi
- Abdulmalik Almufarrih
- Abdulaziz Al-hamad
- Ahmed Almarzugi
- Nasser Al-moosa
- AbdulRahman Al-sharidah

DIURESIS PRACTICAL

<u>objectives</u>

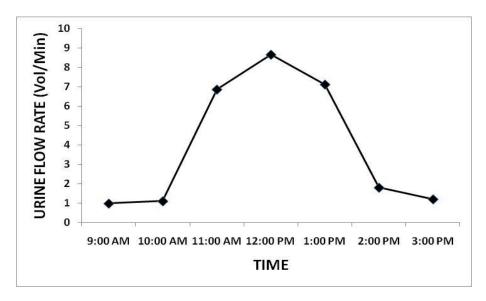
- 1. To be able to discuss the mechanisms by which the body:
 - a. Conserves fluids and sodium if neither food nor water is taken.
 - b. Excretes more water when extracellular fluids are diluted by the ingestion of water.
 - c. Slowly eliminates sodium and water when the extracellular fluid volume is increased without altering its osmolality.
 - d. Excretes large quantities of both water and sodium after taking Lasix tablet.

Most important points:

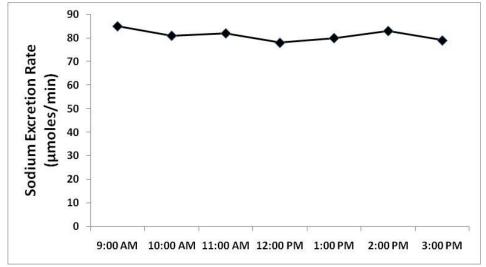
- look for the graphs in this file (especially the one which is about urine flow) and you have to memorise the orders with each graph.
- you have to know how to calculate total sodium excretion and sodium excretion rate.

Several students have volunteered to take an active part in this practical class

Let us see what happen with them


first subject dinking 1 litter of water

pre-experimental sample →before drinking 1 litter of water the subject asked to urinate .


post-experimental sample → after drinking 1 litter of water the subject asked to urinate every half an hour

We will find in the subject that urine volume will be about the same in the first post-experimental sample as of the pre-experimental sample, but then will increase dramatically in the subsequent samples and will again decrease back to the level of pre-experimental sample in the last sample.

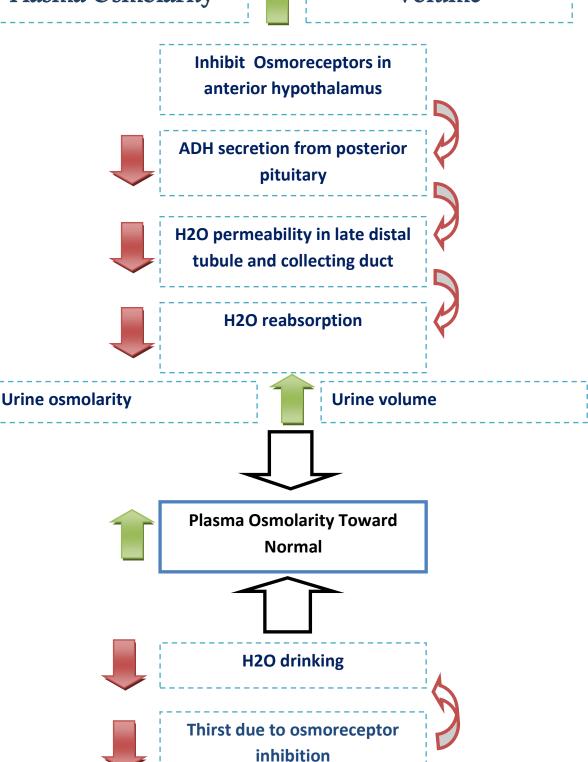
It means that the healthy kidneys get rid of this 1 liter of water ingested by the subject in 3 hours and the mechanism starts after 30 minutes, as shown by the following graph:

However sodium excretion in this subject will remain constant as shown by the following graph:

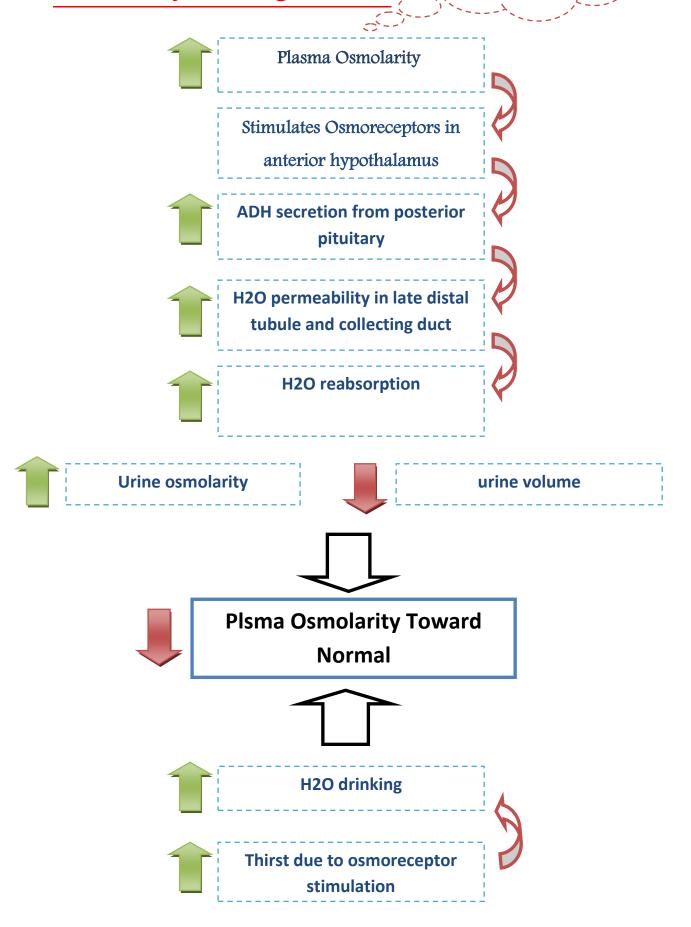
It is basic knowledge and not included in our exam as DR sitalbanat said

Means decrease or inhibition

Means increase or stimulation

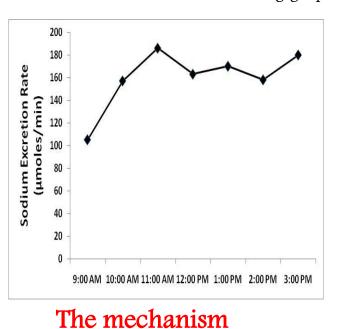

The mechanism:

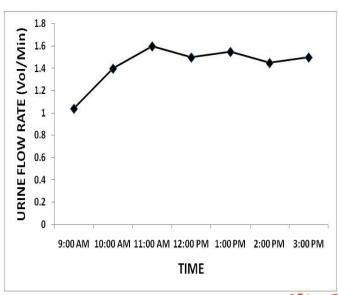
Plasma Osmolarity

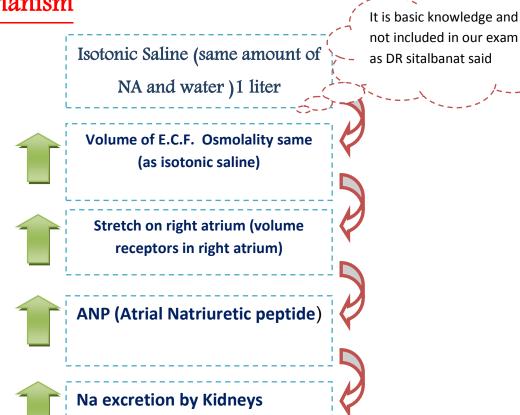


Volume

It is basic knowledge and not included in our exam as DR sitalbanat said

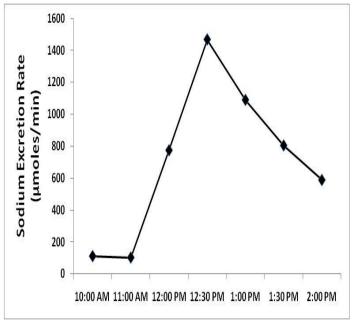

Second subject taking no fluids

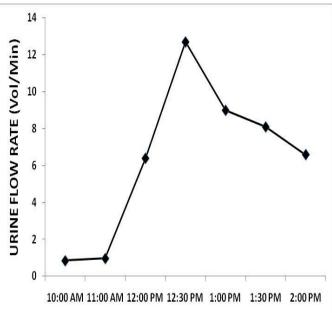



Third Subject drinking 1 litter of isotonic saline

We will find in this subject that urine volume and osmolality will remain slightly increased in the post-experimental sample as compared to pre-experimental sample. It means that the kidneys are trying to get rid of this extra sodium chloride and water that has been ingested by this subject, but slowly. As a matter of fact, it will take 24 hours to excrete 1 liter of isotonic saline ingested by him.

You can see the slightly increased urine volume and sodium excretion in the following graphs:





Fourth subject taking 1 tablet of lasix

We will find in the subject that urine volume and osmolality dramatically increased after 1 hour of taking Lasix tablet and remained increased for further duration of experiment. What we know about the effect of Lasix is that it usually starts 1-2 hours after ingesting it and lasts for 4-6 hours.

That means volume and Na excretion dramatically increased after 1 hour and remained increased for 4-6 hours. You can see the changes in urine volume and sodium excretion in this subject taking Lasix tablet in the following graphs:

The mechanism

It is basic knowledge and not included in our exam as DR sitalbanat said

1 tab of Lasix (furosemide) (40mg) with 25ml of water

Action starts 1-2 hours and lasts for 4-6 hours (1/2 life of furosemide is 6hr)

Acts on thick ascending limb of loop of Henle and blocks the Na-K-2Cl co-transport (called loop diuretic

Na excretion in urine and water excretion (osmotic drag)

The following is a sample table that we fill out during these experiments:

SAMPLE NO.	1	2	3	4	5	6	7
COLLECTION TIME (minutes)	120	30	30	30	30	30	30
VOLUME OF URINE (ml)	118	33	200	280	240	60	50
URINE FLOW RATE (ml / min)	0.98	1.1	6.66	9.33	8	2	1.66
SODIUM CONCENTRATION (mmoles/liter)	87	65	12	10	8	30	40
TOTAL SODIUM EXCRETION (mmoles)	10.3	2.2	2.4	2.8	1.9	1.8	2.00
SODIUM EXCRETION RATE (μmoles/min)	85.6	71.5	80	93.3	64	60	66.7

- The sample no.1 is the pre-experimental sample and the remaining samples are post-experimental samples.
- Urine flow rate is obtained by applying the following equation

$$urine flow rate = \frac{Volume of urine}{time}$$

Total sodium excretion is obtained by applying following equation:

$$Sodium\ excretion = \frac{Sodium\ concentration\ x\ Volume\ of\ urine}{1000}$$

Sodium excretion rate is obtained by applying the following equation:

$$Sodium\ excretion\ rate = \frac{Sodium\ concentration\ x\ Volume\ of\ urine}{Time}$$

Sodium excretion rate =
$$\frac{87 \times 118}{120}$$
 = 85. 6µmoles/m total sodium excretion = $\frac{87 \times 118}{1000}$ = 10. 3mmol urine flow rate = $\frac{118}{120}$ = 0. 98 ml/min

This page for knowledge and for practicing to calculate total sodium excretion and rate also to calculate urine flow rate

	<u></u>				90 -	(sto)		1-60
SAMPLE NO.	1	2	3	4	-5	6 .	7	~~~
COLLECTION TIME – mins	120	30	30	30	30	30	30	
VOLUME (ml)	118	33	206	260	214	54	36	
VOLUME/MINUTE (ml/min)	0.98	1.10	6.87	8.67	7.13	1.8	1.2	
[Na ⁺] (mM)	87	56	12	9	10	25	53	
TOTAL SODIUM EXCRETION – mmoles	10.3	1.8	2.5	2.3	2.1	1.4	1.9	
SODIUM EXCRETION (µmoles/min)	85.6	61.6	82.4	78	71.3	45	63.6	

SAMPLE NO.	. 1.	2	. 3	4	5	6	7
COLLECTION TIME - mins	120	30	30	30	30	. 30	30
VOLUME (ml)	125	39	50	42	47	32	45
VOLUME/MINUTE (ml/min)	1.04	1.30	1.67	1.40 .	1.57	1.07	1.50
[Na [†]] (mM)	101	98	: 112	109	120	137	127
TOTAL SODIUM EXCRETION – mmoles	12.6	3.8	5.6	4.6	5.6	4.4	5.7
SODIUM EXCRETION (µmoles/min)	105.2	127.4	186.7	152.6	188.0	146.1	190.5

Sample No.	1	2	3	4	5	6	7	Caesix
COLLECTION TIME – mins	120	60	42	18	30	30	,	~~~
VOLUME (ml)	102	58	269	230	270	125		
VOLUME/MINUTE (ml/min)	0.85	0.97	6.4	12.7	9.0	4.2		
[Na ⁺] (Conc)	132	107	121	115	121	. 117	70	132×10
TOTAL SODIUM EXCRETION – mmoies	13.5	6.2	32.5	26.4	32.6	14.6		> Matcond x Vo
SODIUM EXCRETION (µmoles/min) rate	112.2	103	774	1467	1089	487.5		→
2 HOURS BEFORE 3 HOURS AFTER TAKING LASIX TAKING LASIX								Vol x conc Ala time.
	DIUR	ESIS	EXPE	RIM	ENT			120