
Team Leaders						
Lama Mokhlis	Osamah Al-Jarallah					
Team Members						
Dalal Fatani Alanood Asiri Noha Khalil Reem AlMansour Hadeel Helmi AlHanouf Alomran	Abdulaziz Al-Shamlan Abdullah Al-Mazyad Turki Al-Otaibi Khalid Al-Khamis					

Inborn Errors of Amino Acid Metabolism

→ genetic mistake of gene loss or mutation leading to a disease it is an abnormal protein synthesis leading to 1. Enzyme deficiency

2. Co-Enzyme deficiency

 \rightarrow this leads to accumulation of substrates and lack of products.

1.The Classical (Primary) Type PKU:

The defect is in the enzyme **phynylalaninehydroxylase** resulting in an accumulation of phenylanine → phenylketones in the urine and hyperphenylalaninemia

2. The Atypical (Secondary) Type PKU:

the defect is in the recycling of the co-factor: **BH**₄; when it is used up it is transformed into BH₂. BH₂ is later converted to BH₄ via 3 enzymes: 1.Dihydropteridine reductase 2.Dihydrobiopterin synthetase 3.Carbinolamine dehydratase

Main Enzyme that converts BH2 to BH4

A defect in Dihydropteridine reductase results in the atypical PKU (Secondary cause) (NOTE : both Dihydrobiopterin Synthetase and Carbinolamine Dehydratase bring or synthesis BH2 to Dihydropterine Reductase to convert it to BH4, so if there is a defect in <u>ONE</u> of These <u>TWO</u> enzyme (2,3) there will be BH2 that is brought to the main enzyme (1) but LESS than normal > raise in Phenylalanine Concentration. But if there is a defect in Both Enzymes (2,3) there will be no BH2 > as a result No BH4), even if phenylalanine hydroxylase level is normal. \rightarrow no conversion to tyrosine

• when tyrosine is not formed all other products will be deficient:

Only in case of BH4 deficiency, has nothing to do with Tyrosine deficiency - Serotonin (neurotransmitter) \rightarrow CNS abnormality

1. Catecholamine (neurotransmitter) → CNS abnormality

iciency 2.<u>Melanin (skin pigment)</u> \rightarrow hypo-pigmentation (fair skin – White in color) When this pathway is inhibited and the non-essential amino acid tyrosine is low, the body compensates by using the dietary source of tyrosine (essential); however, the accumulated

Phenylalanine inhibits the enzyme **tyrosinase** Elevated phenylalanine in the plasma, tissues and urine. It is degraded to phenyllactate, phenylacetate, and Phenylpyruvate which give the urine <u>a mousy odor</u>.

<u>Clinical Manifestations:</u>

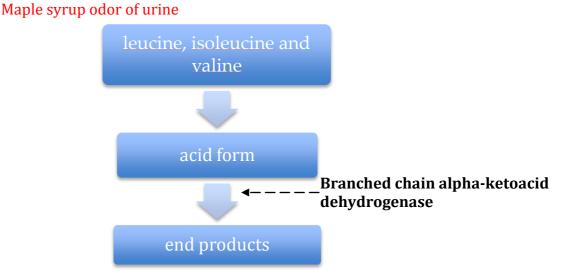
CNS symptoms: Mental retardation, failure to walk or talk, seizures, etc.

Hypopigmentation due to: Deficiency of melanin

Hydroxylation of tyrosine by tyrosinase is inhibited by high phe conc.

This enzyme is responsible for the initial step in melanin formation from tyrosine.

Diagnosis:


Prenatal by detecting gene mutation in fetus

Neonatal diagnosis in infants is done by measuring blood phe levels

Treatment:

Life long phe-restricted diet: decreased protein intake along with protein supplements with limited phenylalanine content. Increased fruit and cereal intake.

Maple Syrup Urine Disease:

Defect in **alpha-ketoacid dehydrogenase** will result in the accumulation of both the original and the acidic forms of them.

Types:

Classic type: Most common, due to very little or no activity of a-ketoacid dehydrogenase Intermediate and intermittent forms: partial enzyme activity (3-15%), symptoms are milder

Thiamin-responsive form: High doses of thiamin (Vitamin B1) increases a-ketoacid dehydrogenase activity (because Vitamin B1 is a co-Enzyme). These are a percentage of the patients who are responsive.

Symptoms: mental retardation, physical disability, metabolic acidosis (due to vomiting and dehydration associated with this disease)

Treatment:

Limited intake of leucine, isoleucine and valine

Albinism:

As mentioned above Tyrosine **tyrosinase** melanin (a pigment of hair, skin and eyes) Melanin biosynthesis:

Defected **tyrosinase→** absent melanin → albino patient

Hair and skin appear white Defected vision, photophobia *high risk of skin cancer

Homocystinuria:

defects in homocysteine metabolism:

Cystathionine b-synthase

Homocysteine Cystathione

Deficiency of cystathionine b-synthase

High plasma and urine levels of homocysteine and methionine Homocysteine is a risk factor for atherosclerosis and heart disease

- Skeletal abnormalities, osteoporosis, mental retardation, displacement of eye lens "ectopialensis"
- Neural tube defect (spina bifida) This result from →
- Vascular disease (atherosclerosis)
- Heart disease

Treatment:

Oral administration of vitamins B_6, B_{12} and folate Vitamin B_6 is a cofactor for cystathionine b-synthase Methionine-restricted diet

Alkaptonuria

A rare disease of tyrosine degradation Due to deficiency of **homogentisic acid oxidase**

This enzyme is required during the late stages of tyrosine degradation pathway

Homogentisic acid is accumulated in tissue and cartilage →arthritis

Homogentisicaciduria: elevated homogentisic acid in urine → oxidized to dark urine over time And black pigmentation of cartlidge

This is usually asymptomatic until adulthood with arthritis as the main complaint. **Treatment:**

Restricted intake of tyrosine and phenylalanine to reducehomogentisic acid and dark pigmentation

IMPORTANT SUMMARY

	Disease	Enzyme	Aminoacids involved
1	Phenylketonuria	Phenylalanine hydroxylase	Phenylalanine
2	Maple syrup urine disease	α-ketoacid dehydrogenase	Isoleucine, leucine and valine
3	Albinism	Tyrosinase	Tyrosine
4	Homocystinuria	Cystathionine β -synthase	Methionine
5	Alkaptonuria	Homogentisic acid oxidase	Tyrosine and phenylalanine

Dr Othman said that you should know at least the enzyme that is deficient and in which disease ⁽²⁾

- <u>Deficiency of:</u>
- Tetrahydrofolate
- Methioninesynthase
- •Vitamin B₆, B₁₂
- •Folic acid

***Summary table done by Hadeel Al-subaie

	Phenylketonuria (PKU)	Maple Syrup Urine Disease (MSUD)	Albinism	Homocyteinuria	Alkaptonuria
Deficient enzyme	<u>Classic:</u> phenylalanine hydroxylase <u>Atypical:</u> BH4	a-ketoacid dehydrogenase	tyrosinase	cystathionine b- synthase	homogentisic acid oxidase
Accumulated	phenylalanine	leucine, isoleucine and valine	tyrosine	homocysteine and methionine	Homogentisic acid
	No tyrosine, melanin		No melanin		Tyrosine is present
Sign & symptoms	 1-Mental retardation. 2- failure to walk or talk. 3- Seizures. 4- Hypopigmentation (Light skin) 5- mousy odor urine due to Phe is degraded to phenyllactate, phenylacetate, and phenylpyruvate. 	 1- mental retardation. 2- physical disability. 3- metabolic acidosis. 	 Hair and skin appear white. Vision defects. photophobia. 	 1- Skeletal abnormalities. 2- osteoporosis. 3- mental retardation 4- displacement of eye lens. 	 urine is oxidized to dark pigment over time. Arthritis. Black pigmentation of cartilage & tissue. Usually asymptomatic until adulthood
Treatment	Life long phe- restricted diet	Limited intake of leucine, isoleucine and valine		 1- Oral administration of vitamins B6, B12 and folate. 2- Methionine- restricted diet. 	Restricted intake of tyrosine and phenylalanine reduces homogentisic acid and dark pigmentation
Notes	Atypical is Caused by the deficiency of: 1- Dihydropteridine reductase. 2- Dihydrobiopterin synthetase. 3- Carbinolamine dehydratase.	Types: 1- Classic. 2-Intermediate forms. 3- Thiamin-		a risk factor for: 1- atherosclerosis. 2- heart disease 3- Neural tube defect (spina bifida)	

QUESTIONS

- 1- Which one of the following enzymes is deficient in case of **Classic phenylketonuria** PKU ?
 - A- Tyrosinase
 - B- Dihydropteridine reductase.
 - C- Phenylalanine Hydroxylase.
 - D- B&C
- 2- Which one of the following co-enzymes is required to activate Phenylalanine hydroxylase ? A- Tetrahydrobiopterin (BH4)
 - B- Dihydrobiopterin (BH2)
 - C- Dihydropteridine reductase.
 - D- Phenylalanine Synthase.
- 3- Which of the following is a risk factor of Homocysteinemia?
 - A- Atherosclerosis
 - B- Spinal bifida
 - C- Increase intake of Isoleucine
 - D- A&B
- 4- Which one of the following statements is correct ?
 - A- If there is BH4 deficiency , still the body can synthesis Serotonin .
 - B- If there are Phenylalanine hydroxylase and BH4 deficiency , still the body can synthesis Serotonin.
 - C- If there is a deficiency in Phenylalanine hydroxylase but BH4 is intact, still the body can synthesis Serotonin .
 - D- All statements are WRONG .
- 5- Ali is child who has a white hair color and he cannot see very well in day time .. which one of the following enzymes is deficient in such a case ?
 - A- Albinotase
 - B- Homogentisic acid oxidase
 - C- Tyrosinase
 - D- Cystathionine B-Synthase.