





# Tubular Reabsorption

Guyton Dr Sitelbanat Awadalla

Dr Sitelbanat



# At the end of this lecture student should be able to describe:

- Mechanism of urine formation
- Renal tubular transport
- Nacl re-absoption in PCT
- Water re-absoption in PCT
- Glucose and amino acid re-absoption in PCT

# **Tubular Function**

#### Glomerulus



Re-absorption: flow of filtrate from the tubules into the peritubular capillaries.
Secretion : movement of substances(that didn't undergo filtration ) from blood capillaries into the tubules.

### Filtration, Reabsorption and excretion rate

|                       | Filtered | Absorb. | Excreted | A/F % |
|-----------------------|----------|---------|----------|-------|
| Glucose<br>(g/d)      | 180      | 180     | 0        | 100   |
| HCO3<br>(meq/d)       | 4320     | 4318    | 2        | 99.98 |
| Na<br>(meq/d)         | 25560    | 25410   | 150      | 99.4  |
| Cl (meq/d)            | 19440    | 19260   | 180      | 99.1  |
| K (meq/d)             | 756      | 664     | 92       | 87.7  |
| Urea (g/d)            | 46.8     | 23.4    | 23.4     | 50    |
| creatinine<br>(meq/d) | 1.8      | 0       | 1.8      | 0     |

**Dr. Sitelbanat** mentioned that you don't need to memorize these numbers But you have to get the general idea , **Glucose is** completely reabsorbed , **creatinine** is completely excreted. Calculation of tubular reabsorption or secretion from renal clearances

# Reabsorption or secretion = Quantity Filtrated – Quantity excreted

#### Quantity Filtrated = P<sub>x</sub> x GFR

**Px** is the concentration of the molecule X in the plasma.

#### •Quantity Excreted = $U_x \times V$

**Ux** is the concentration of molecule X in the urine.

**V** is the volume of urine.

#### **Calculation of renal transport (Tx)** $T_x = GFR \times P_x - U_x V$



Filtered = GFR x P<sub>x</sub>

T<sub>x</sub> = 0 GFR x P<sub>x</sub> = U<sub>x</sub>V e.g. Inulin **Tx** = the amount that is transported of molecule x.

What do we mean by Renal Tubular transport? Renal Transport is the movement of material in both direction ,both Reabsorption ( to blood from tubules ) or secretion ( from blood to tubules)

#### Why Tx =0 ?

Because there is no transport of molecule x (No Reabsorption , No secretion )

Inulin is freely filtered . Not Reabsorbed Not secreted.

Reabsorbed

> T<sub>x</sub> = positive GFR x P<sub>x</sub> > U<sub>x</sub>V e.g. glucose

**<u>Remember</u>**: Quantity Filtrated =  $P_x x GFR$ Quantity Excreted =  $U_x x V$ 

If the amount Filtered is <u>more than</u> the excreted the Transport is **Positive.** It is less excreted because the molecule is reabsorbed.

Ex : Glucose , Glucose is Filtered , completely reabsorbed , Not Excreted ( amount filtered is more than excreted {0} ) so positive transport.



Remember : Quantity Filtrated =  $P_x x GFR$ Quantity Excreted =  $U_x \times V$ 

If the amount Excreted is more than the filtered the Transport is Negative. There is more excretion because the molecule is secreted.

 $T_x = negative$  $GFR \times P_x < U_y V$ e.g. PAH

### Calculation of Na reabsorption Example

Plasma Na concentration = 140 mEq/L
GFR (inulin clearance) = 125 ml/min
Urine flow rate = 1 ml/min
Urine concentration of Na= 70 mEq/L

#### **Calculate the amount of Na transported?**

#### Reabsorption or secretion =

Quantity Filtrated – Quantity excreted

- = (Px x GFR) ( Ux x V )
- = (140 x 125 ) ( 70 x 1 ) = 17430

# Types of transport



Which type is more difficult and why? Transcellular , because the molecule should cross 2 membranes ( Apical+ basal).

## Proximal convoluted tubule

- High capacity for reabsorption
  - Special tubular epithelial cell
  - Metabolically active (lot of mitochondria)
  - Brush border (surface area)
  - Tight junction is not so tight
  - Contain a lot of carrier protein

#### **Cells of the Proximal Convoluted Tubule (PCT)**

Simple cuboidal cells with brush border Highly permeable to water and many solutes.



# Substances absorbed in PCT

- Tubular absorption
  - Sodium
  - Chloride
  - Glucose
  - Water
  - Amino acid
  - Bicarbonate
  - Phosphate
  - Urea

- Secretion
  - PAH
  - H⁺

— K



#### Who is the leader of reabsorption ?

Sodium Na is the leading substance , If Na is reabsorbed , the rest of substances will follow , even water.

# Sodium reabsorption in PCT

- 65-70% of filtered sodium is reabsorbed in PCT
- Followed by water & chloride
- Iso-osomotic absorption (equal quantity of solute & water)
- Important for the absorption of
  - Glucose
  - Amino acids
  - phosphates

Na reabsorption is important for Glucose reabsorption . If Na is not reabsorbed , Glucose will not be reabsorbed.

### Passage of sodium absorption



Na first passes from the lumen to the Renal Cell  $\rightarrow$  then from the renal cell to the peritubular capillary.

### Mechanism of sodium reabsorption

#### Basolateral membrane

- Na+/K+ Atpase
  - 3 Na / 2 K
  - K leak out of the cell

#### **Results in**

- Low intracellular Na Concentration
- high peritubular osmolality



**Na/K** Atpase will pump 3 Na out and 2 K in , this will lead to low intracellar Na concentration in the renal cell , this low concentration will help Na to pass passively from the lumen( where Na concentration is high ) to the renal cell ( where Na concentration is low because of the pump )

### Mechanism of sodium reabsorption

- Na enter the cell passively following
  - Electrical difference (inside the cell -70mv, lumen -4mv)
  - Na concentration differences (140 mEq/L to 12mEq/L)
- Na enter the cell across the luminal membrane:
  - Cotransport with glucose, amino acids
  - Na in exchange H (counter transport)
  - Na channel

# **Chloride reabsorption**

• Cl reabsorbed down concentration gradient following the positively charge Na

### Water reabsorption

- 60-70% of filtered water is reabsorped in PCT
  - Active pump of Na from renal cell to peritubular space results in increases the osmolality of peritubular space
  - Drag water by osmosis
- Filterate remain iso-osmotic (~equal quantity of water & solute are absorbed)

## Glomerulo-tubular balance

- Feed back mechanism to keep a fixed percentage of reabsorbed glomerular filtrate
- The higher the filtration in the glomerulus → the higher oncotic pressure in efferent & peritubular capillaries → ↑ reabsorption in PCT

#### **Do not Get confused :**

#### Tubulo-glomerular Feedback

#### Glomerulo-tubular Feedback

•decrease GFR → slow flow → increase
Nacl reabsoption → decrease Nacl at
macula densa .. This will lead to :
1.Renin production → angiotensin II
→ efferent vasoconstriction → increase
GFR

Afferent dilation  $\rightarrow$  increase GFR (mechanism unknown)

+

Feed back mechanism to keep a fixed percentage of reabsorbed glomerular filtrate

The higher the filtration in the glomerulus  $\rightarrow$  the higher oncotic pressure in efferent & peritubular capillaries  $\rightarrow \uparrow$  reabsorption in PCT

### **Glucose reabsorption**

- In healthy adult all filtered glucose is reabsorbed and no glucose will appear in urine
- If plasma glucose (P<sub>G</sub>) reach 200 mg/dl, glucose appear in the urine – this level is the "Renal threshold"
  - 200mg/dl in arterial; 180 mg/dl in venous

# **Glucose reabsorption**

- The amount of reabsorped glucose at very high filtered glucose, remains constant, this is called tubular transport maximum for glucose (Tm<sub>G</sub>)= 375 mg/min (female 300mg/min)
- At this maximum transport, all the glucose carriers are saturated and no more glucose can be transported

### Mechanism of Glucose reabsorption

- Secondary active transport
- Luminal membrane
  - Cotransport with Na
- Basolateral membrane
   GLUT 1 & 2

GLUT membrane proteins that facilitate the transport of glucose.

#### LUMEN

#### **Cell of the proximal tubule**



#### **Cellular Mechanism for Glucose Reabsorption**

Dr Sitelbanat

BLOOD

# Amino acid reabsorption

- All filtered AAs are reabsorbed in PCT
- Luminal membrane
  - Cotransport with Na
- Basolateral membrane
  - diffusion

### **SUMMARY**

- 65-70% of filtered sodium is reabsorbed in PCT ,Iso-osomotic absorption (equal quantity of solute & water)
- Sodium Na is the leading substance
- Types of transport: 1) Transcellular: Across renal cell
   2)Paracellular: Through tight junction
- Renal transport :T<sub>x</sub> = GFR x P<sub>x</sub> U<sub>x</sub>V = the amount that is transported of molecule
- (Tm<sub>G</sub>)= The amount of reabsorped glucose at very high filtered glucose= 375 mg/min (female 300mg/min)
- Reabsorption or secretion =
  Quantity Filtrated Quantity excreted = (Px x GFR) (Ux x V)
- All filtered AAs are reabsorbed in PCT

- vegetarian pass alkaline urine
- sodium, potassium depends on your diet intake
- does the loop of henle contain glucose, portion, or amino acid normally? no
- simpe diffusion: without carrier
- facilitated diffusion: with carrier
- • primary active transport: use energy directly by atp
- secondary active transport:energy is indirectly by co and counter transport
- glucose and amino acid transported from cell to interstitium by facilitated diffusion