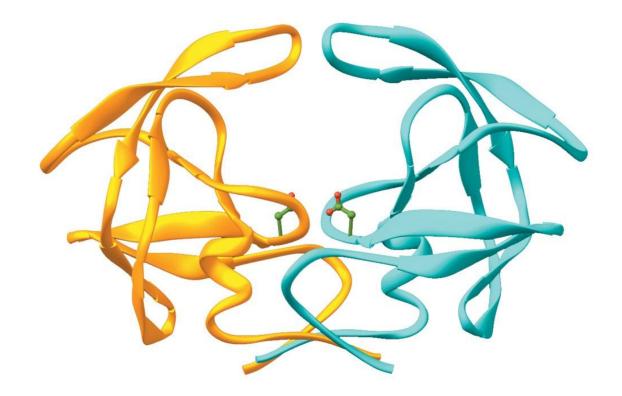
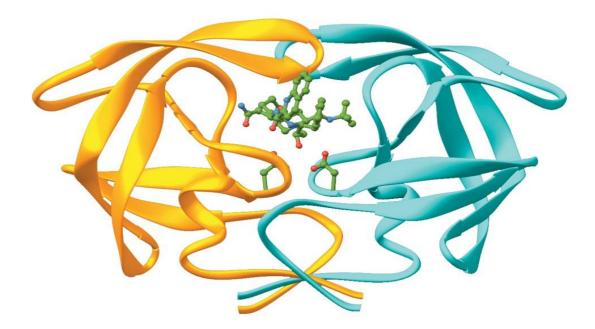
Enzyme inhibition

Biochemistry team

Enzyme inhibition




 Inhibition is a process by which the enzyme activity is regulated or controlled or stopped

• To inhibit means to stop enzyme activity

An enzyme without inhibitor

An enzyme with inhibitor

Ki (Inhibitor constant)

• K_i is a measure of the affinity of inhibitor for enzyme

Also called dissociation constant

There are three types of enzyme inhibition:

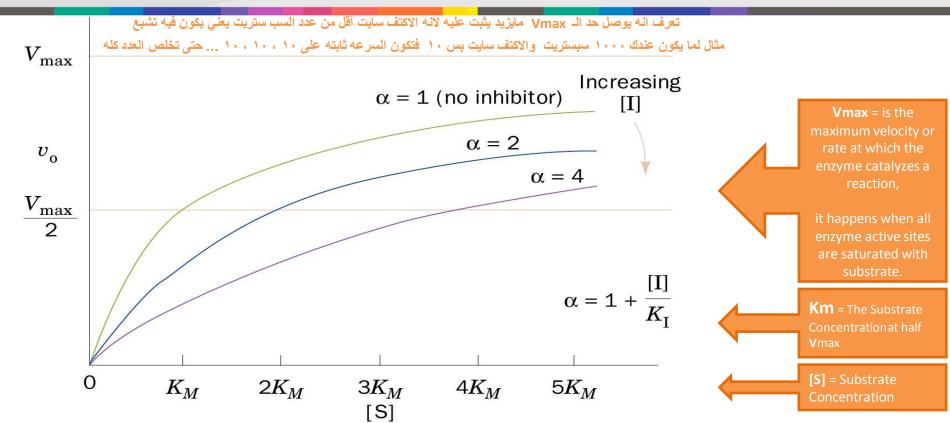
Competitive
Noncompetitive
Uncompetitive
ماهو مطلوب

Enzyme inhibition

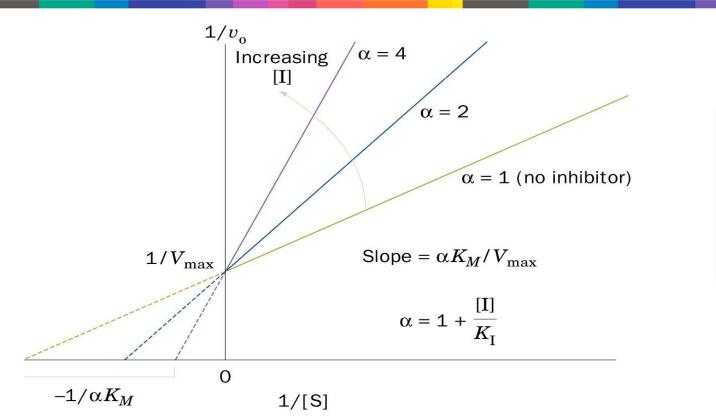
Competitive

Noncompetitive

Competitive inhibition


Km is increased Vmax is unchanged

- The inhibitor is a structural analogue (similar) that competes with the substrate for binding to the active site of enzyme.
- Two reactions are possible:

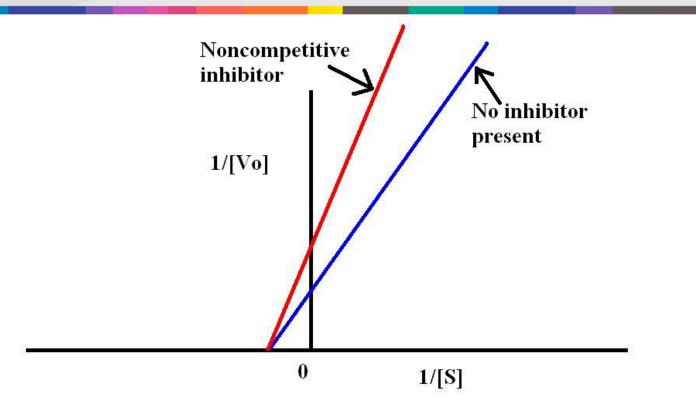


Competitive inhibition

فهم فقط .. Km , Vmax تعرف الكيرف يمثل علاقة بين ايش وايش ،،

Lineweaver–Burk plot of the competitively inhibited Michaelis – Menten enzyme

Km 1 mmol Km 2 mmol Which one has the High affinity ?


1 mmol has more affinity The reason : less amount is required to saturate the enzyme

- In competitive inhibition, V_{max} is unchanged in the presence and the absence of inhibitor
- The value of K_m is increased because S and I compete for binding at the same site
- A higher [S] is required to achieve half-maximal velocity

Noncompetitive inhibition

Km is unchanged Vmax is decreased

- The inhibitor does not have structural similarity to the substrate
- The inhibitor binds to the enzyme at a site away from the substrate binding site
- No competition exists between the inhibitor and the substrate
- The inhibitor can bind to a free enzyme or to an enzyme-substrate complex
- In both cases the complex is catalytically inactive

 $ES + I \leftrightarrow ESI \text{ (inactive)}$ $E + I \leftrightarrow EI \text{ (inactive)}$

- The value of V_{max} is decreased by the inhibitor
- K_m is unchanged because the affinity of S for E is unchanged

Regulation of enzyme activity

- Regulatory enzymes usually catalyze the first or an early reaction in a metabolic pathway
- They catalyze a rate limiting reaction that controls the overall pathway
- They may also catalyze a reaction unique to that pathway known as committed step

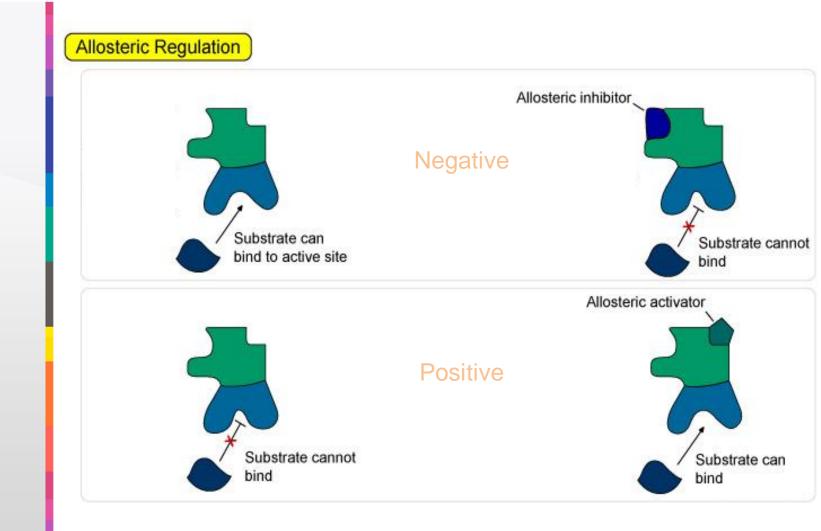
• Feedback inhibition:

اذا زاد تركيز البرودكت فالجسم يحاول الانهبتور يرجع البرودكت لتركيزه الطبيعي

When the end-product of a metabolic pathway exceeds its conc. limit, it inhibits the regulatory enzyme to normalize the pathway (feedback inhibition)

• Feed positive activation:

اذا قل تركيز البرودكت فالجسم يحاول الانهبتور يرجع البرودكت لتركيزه الطبيعي


When the end-product of a metabolic pathway is below its conc. limit, it activates the regulatory enzyme to normalize the pathway

Types of regulation

- Allosteric enzyme regulation
 - Enzymes in metabolic pathways are regulated by certain compounds (ligand)
 - These ligands do not bind to active site
 - They bind to other site (regulatory site) on the enzyme (allosteric enzymes)
 - The term "allosteric" came from Greek word "allos" meaning "other"

Types of regulation

- Cooperative binding
 - Binding of a ligand to a regulatory site affects binding of the same or of another ligand to the enzyme
 - This is called **cooperative binding**

- Binding of a ligand causes a change in the active site of enzyme
 - This causes a change in the binding affinity of enzyme for the substrate

- Positive: increased E, S affinity
- Negative decreased E, S affinity
- Most allosteric enzymes are oligomers (two or more polypeptide chains or subunits)

The subunits are known as protomers

- Two types of interactions occur in Allosteric Enzymes:
 - **Homotropic**: Effect of one ligand on the binding of the same ligand
 - A regulatory enzyme controlled by its own substrate.
 - Heterotropic: Effect of one ligand on the binding of a different ligand

Enzymatic diagnosis and prognosis of diseases

• Enzymes are used clinically in three ways:

- As indicators of enzyme activity or conc. in body fluids (serum, urine) in the diagnosis/prognosis of diseases
- As analytical reagents in measuring activity of other enzymes or compounds in body fluids
- As therapeutic agents

Enzymatic diagnosis and prognosis of diseases

 The most commonly used body fluids for measuring enzyme activity are serum and plasma

• There are:

- Plasma-specific enzymes
- Non plasma-specific enzymes

What body fluids are more commonly used to measure enzyme activity ?

> -Plasma -Serum

Serum markers in the diagnosis of diseases: Heart disease Pancreatic diseases Liver diseases

Choose the correct answer "

1) A Competitive inhibitor of an enzyme :	The answer is A
a- increases Km without affecting Vmax b- decrease Km without affecting Vmax c- increases Vmax without affecting Km	
2) The Km is :	The answer is C
a- numerically equal to 1/2 Vmax b- independent of ph c- numerically equal to the substrate concentration that gives half-maximal velocity	